cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344309 a(n) is the number of eigensequences (including eigenvalues, where they exist) of the Fibonacci recurrence in Zp where p is prime(n).

This page as a plain text file.
%I A344309 #9 Jan 05 2025 19:51:42
%S A344309 0,0,1,0,2,1,1,2,0,3,2,1,3,0,2,1,2,5,0,2,1,2,0,9,1,3,0,2,5,5,0,2,1,4,
%T A344309 5,4,1,0,0,1,2,3,2,1,1,10,6,0,0,3,17,2,3,2,1,2,5,2,1,11,0,1,6,2,1,1,4,
%U A344309 1,2,3,5,2,0,1,2,0,5,1,5,3,2,21,2,1,2,0
%N A344309 a(n) is the number of eigensequences (including eigenvalues, where they exist) of the Fibonacci recurrence in Zp where p is prime(n).
%C A344309 It appears that the indices m where a(m) = 0 give A270532.
%H A344309 M. Aoki, Y. Sakai, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Aoki/aoki4.html">On Equivalence Classes of Generalized Fibonacci Sequences</a>, JIS vol 19 (2016) # 16.2.6
%H A344309 H. Sedaghat, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/52-1/Sedaghat.pdf">Zero-Avoiding Solutions of the Fibonacci Recurrence Modulo A Prime</a>, Fibonacci Quart. 52 (2014), no. 1, 39-45. See p. 44.
%F A344309 a(n) = E(p)/(p-1) where p is prime(n) and E(p) = 4 if p=5; (p-1)^2/ep(n) + p - 1 if p==1 or 4 (mod 5); (p^2-1)/ep(n) + 1 - p if p==2 or 3 (mod 5), where ep(n) = A001602(n).
%p A344309 A344309 := proc(i)
%p A344309     local p,F ;
%p A344309     p := ithprime(i) ;
%p A344309     for n from 1 do
%p A344309         F := combinat[fibonacci](n) ;
%p A344309         if modp(F,p) =0 then
%p A344309             if modp(p,5) in {2,3} then
%p A344309                 return (p+1)/n-1 ;
%p A344309             elif modp(p,5) in {1,4} then
%p A344309                 return (p-1)/n+1 ;
%p A344309             else
%p A344309                 return 1 ;
%p A344309             end if;
%p A344309         end if;
%p A344309     end do:
%p A344309 end proc;
%p A344309 seq(A344309(n),n=1..55) ; # _R. J. Mathar_, Feb 27 2023
%o A344309 (PARI) ep(n) = if(n==3, 5, my(p=prime(n)); fordiv(p^2-1, d, if(fibonacci(d)%p==0, return(d)))); \\ A001602
%o A344309 a(n) = {my(p=prime(n), mp = p % 5); my(x=if ((mp==0), 4, if ((mp==1) || (mp==4), (p-1)^2/ep(n) + p - 1, (p^2-1)/ep(n) + 1 - p))); x/(p-1);}
%Y A344309 Cf. A001602, A270532.
%K A344309 nonn
%O A344309 1,5
%A A344309 _Michel Marcus_, May 14 2021