A344325 Squares visited on a spirally numbered board when stepping to the closest unvisited square which contains a number that shares no digit with the number of the current square. If two or more such squares are the same distance away the one with the smaller number is chosen.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 48, 79, 80, 49, 26, 51, 84, 125, 83, 50, 81, 52, 86, 53, 28, 11, 27, 85, 126, 87, 54, 29, 30, 55, 88, 129, 56, 31, 58, 93, 57, 90, 131, 89, 130, 92, 135, 94, 137, 95, 60, 33, 14, 32, 59, 13, 62, 35, 16, 34, 15, 36, 17, 38, 67, 104, 66, 37, 64, 99, 100, 65, 102
Offset: 1
Examples
The board is numbered with the square spiral: . 17--16--15--14--13 . | | . 18 5---4---3 12 29 | | | | | 19 6 1---2 11 28 | | | | 20 7---8---9--10 27 | | 21--22--23--24--25--26 . a(2) = 2 as from 1 there are four numbers one unit away, 2,4,6,8, none of which contain the digit 1, so of these the smallest is chosen, which is 2. a(11) = 25 as from the square 10 the square with 25 is only one unit away and shares no digit with 10. a(20) = 83 as the four squares one unit away from 125 have been visited or contain digits 1,2 or 5. The square with 83 is diagonally adjacent to 125 and is the first time a square more than one unit away is stepped to. a(23) = 52, and is the first square stepped to that is not adjacent to the previous square, being three units away from 81. All closer squares have been either visited or contain a 1 or 8 in their number.
Links
- Scott R. Shannon, Image of the first 6000 steps. The step colors are graduated across the spectrum from red to violet to show the relative step ordering. The starting square is shown as a white dot.
- Scott R. Shannon, Image of the first 1000000 steps.
Comments