This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344335 #16 Aug 19 2021 12:55:24 %S A344335 1,9,9,17,9,81,9,25,17,81,9,153,9,81,81,33,9,153,9,153,81,81,9,225,17, %T A344335 81,25,153,9,729,9,41,81,81,81,289,9,81,81,225,9,729,9,153,153,81,9, %U A344335 297,17,153,81,153,9,225,81,225,81,81,9,1377,9,81,153,49,81,729,9,153,81,729,9 %N A344335 Number of divisors of n^8. %H A344335 Seiichi Manyama, <a href="/A344335/b344335.txt">Table of n, a(n) for n = 1..10000</a> %F A344335 a(n) = A000005(A001016(n)). %F A344335 Multiplicative with a(p^e) = 8*e+1. %F A344335 a(n) = Sum_{d|n} 8^omega(d). %F A344335 G.f.: Sum_{k>=1} 8^omega(k) * x^k/(1 - x^k). %F A344335 Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 7/p^s). - _Vaclav Kotesovec_, Aug 19 2021 %t A344335 Table[DivisorSigma[0, n^8], {n, 1, 100}] (* _Amiram Eldar_, May 15 2021 *) %o A344335 (PARI) a(n) = numdiv(n^8); %o A344335 (PARI) a(n) = prod(k=1, #f=factor(n)[, 2], 8*f[k]+1); %o A344335 (PARI) a(n) = sumdiv(n, d, 8^omega(d)); %o A344335 (PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 8^omega(k)*x^k/(1-x^k))) %o A344335 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 7*X)/(1 - X)^2)[n], ", ")) \\ _Vaclav Kotesovec_, Aug 19 2021 %Y A344335 Column k=8 of A343656. %Y A344335 Cf. A000005, A001016. %K A344335 nonn,mult %O A344335 1,2 %A A344335 _Seiichi Manyama_, May 15 2021