This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344336 #18 Aug 19 2021 12:55:13 %S A344336 1,10,10,19,10,100,10,28,19,100,10,190,10,100,100,37,10,190,10,190, %T A344336 100,100,10,280,19,100,28,190,10,1000,10,46,100,100,100,361,10,100, %U A344336 100,280,10,1000,10,190,190,100,10,370,19,190,100,190,10,280,100,280,100,100,10,1900,10,100 %N A344336 Number of divisors of n^9. %H A344336 Seiichi Manyama, <a href="/A344336/b344336.txt">Table of n, a(n) for n = 1..10000</a> %F A344336 a(n) = A000005(A001017(n)). %F A344336 Multiplicative with a(p^e) = 9*e+1. %F A344336 a(n) = Sum_{d|n} 9^omega(d). %F A344336 G.f.: Sum_{k>=1} 9^omega(k) * x^k/(1 - x^k). %F A344336 Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 8/p^s). - _Vaclav Kotesovec_, Aug 19 2021 %t A344336 Table[DivisorSigma[0, n^9], {n, 1, 100}] (* _Amiram Eldar_, May 15 2021 *) %o A344336 (PARI) a(n) = numdiv(n^9); %o A344336 (PARI) a(n) = prod(k=1, #f=factor(n)[, 2], 9*f[k]+1); %o A344336 (PARI) a(n) = sumdiv(n, d, 9^omega(d)); %o A344336 (PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 9^omega(k)*x^k/(1-x^k))) %o A344336 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 8*X)/(1 - X)^2)[n], ", ")) \\ _Vaclav Kotesovec_, Aug 19 2021 %Y A344336 Column k=9 of A343656. %Y A344336 Cf. A000005, A001017, A344337 (9^omega(n)). %K A344336 nonn,mult %O A344336 1,2 %A A344336 _Seiichi Manyama_, May 15 2021