This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344339 #8 May 21 2021 04:18:04 %S A344339 0,1,1,1,1,1,2,2,1,2,1,2,1,2,2,1,1,1,2,2,2,2,3,3,2,2,2,2,2,2,3,2,1,2, %T A344339 1,2,2,2,2,2,2,3,2,3,2,3,2,2,1,2,2,1,2,2,3,2,2,3,2,2,2,3,3,2,1,2,2,2, %U A344339 1,2,2,2,2,3,2,3,2,3,2,2,1,2,2,2,2,1,3 %N A344339 a(n) is the minimal number of terms of A332520 that need to be combined with the bitwise OR operator in order to give n. %C A344339 This sequence is related to Karnaugh maps: %C A344339 - for any number n with up to 2^k binary digits (possibly with leading zeros), %C A344339 - we can interpret the binary expansion of n as a truth table for a k-ary Boolean function f, %C A344339 - a(n) gives the optimal number of products in a disjunctive normal form for f. %H A344339 Rémy Sigrist, <a href="/A344339/a344339.gp.txt">PARI program for A344339</a> %H A344339 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disjunctive_normal_form">Disjunctive normal form</a> %H A344339 Wikipedia, <a href="https://en.wikipedia.org/wiki/Karnaugh_map">Karnaugh map</a> %F A344339 a(n) = 1 iff n > 0 and n belongs to A332520. %F A344339 a(n) <= A000120(n). %F A344339 a(A001196(n)) = a(n). %e A344339 For n = 32576: %e A344339 - the binary representation of 13170 is "111111101000000", %e A344339 - it has 15 bits, so we can take k = 4 (15 <= 2^4), %e A344339 - the corresponding 4-ary Boolean function f has the following truth table: %e A344339 CD\AB| 00 01 11 10 %e A344339 -----+---------------- %e A344339 00| 0 0 1 1 %e A344339 01| 0 0 1 1 %e A344339 11| 0 0 0 1 %e A344339 10| 0 1 1 1 %e A344339 - we can express f as AC' + AB' + BCD' in optimal form, %e A344339 - so a(32576) = 3. %o A344339 (PARI) See Links section. %Y A344339 Cf. A000120, A001196, A332520. %K A344339 nonn,base %O A344339 0,7 %A A344339 _Rémy Sigrist_, May 15 2021