cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344339 a(n) is the minimal number of terms of A332520 that need to be combined with the bitwise OR operator in order to give n.

This page as a plain text file.
%I A344339 #8 May 21 2021 04:18:04
%S A344339 0,1,1,1,1,1,2,2,1,2,1,2,1,2,2,1,1,1,2,2,2,2,3,3,2,2,2,2,2,2,3,2,1,2,
%T A344339 1,2,2,2,2,2,2,3,2,3,2,3,2,2,1,2,2,1,2,2,3,2,2,3,2,2,2,3,3,2,1,2,2,2,
%U A344339 1,2,2,2,2,3,2,3,2,3,2,2,1,2,2,2,2,1,3
%N A344339 a(n) is the minimal number of terms of A332520 that need to be combined with the bitwise OR operator in order to give n.
%C A344339 This sequence is related to Karnaugh maps:
%C A344339 - for any number n with up to 2^k binary digits (possibly with leading zeros),
%C A344339 - we can interpret the binary expansion of n as a truth table for a k-ary Boolean function f,
%C A344339 - a(n) gives the optimal number of products in a disjunctive normal form for f.
%H A344339 Rémy Sigrist, <a href="/A344339/a344339.gp.txt">PARI program for A344339</a>
%H A344339 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disjunctive_normal_form">Disjunctive normal form</a>
%H A344339 Wikipedia, <a href="https://en.wikipedia.org/wiki/Karnaugh_map">Karnaugh map</a>
%F A344339 a(n) = 1 iff n > 0 and n belongs to A332520.
%F A344339 a(n) <= A000120(n).
%F A344339 a(A001196(n)) = a(n).
%e A344339 For n = 32576:
%e A344339 - the binary representation of 13170 is "111111101000000",
%e A344339 - it has 15 bits, so we can take k = 4 (15 <= 2^4),
%e A344339 - the corresponding 4-ary Boolean function f has the following truth table:
%e A344339      CD\AB|  00  01  11  10
%e A344339      -----+----------------
%e A344339         00|   0   0   1   1
%e A344339         01|   0   0   1   1
%e A344339         11|   0   0   0   1
%e A344339         10|   0   1   1   1
%e A344339 - we can express f as AC' + AB' + BCD' in optimal form,
%e A344339 - so a(32576) = 3.
%o A344339 (PARI) See Links section.
%Y A344339 Cf. A000120, A001196, A332520.
%K A344339 nonn,base
%O A344339 0,7
%A A344339 _Rémy Sigrist_, May 15 2021