This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344352 #9 Jul 31 2021 18:21:55 %S A344352 236674,282018,300834,334818,478338,637794,650034,650658,708483, %T A344352 708834,729938,789378,816578,832274,849954,941859,989043,1042083, %U A344352 1045539,1099203,1099458,1102258,1179378,1243074,1257954,1283874,1323234,1334979,1339074,1342979,1352898,1357059,1379043,1518578 %N A344352 Numbers that are the sum of four fourth powers in four or more ways. %H A344352 David Consiglio, Jr., <a href="/A344352/b344352.txt">Table of n, a(n) for n = 1..20000</a> %e A344352 300834 is a term of this sequence because 300834 = 1^4 + 4^4 + 12^4 + 23^4 = 1^4 + 16^4 + 18^4 + 19^4 = 3^4 + 6^4 + 18^4 + 21^4 = 7^4 + 14^4 + 16^4 + 21^4. %o A344352 (Python) %o A344352 from itertools import combinations_with_replacement as cwr %o A344352 from collections import defaultdict %o A344352 keep = defaultdict(lambda: 0) %o A344352 power_terms = [x**4 for x in range(1,200)] %o A344352 count = 1 %o A344352 for pos in cwr(power_terms,4): %o A344352 tot = sum(pos) %o A344352 keep[tot] += 1 %o A344352 count += 1 %o A344352 rets = sorted([k for k,v in keep.items() if v >= 4]) %o A344352 for x in range(len(rets)): %o A344352 print(rets[x]) %Y A344352 Cf. A343971, A344241, A344277, A344353, A344354, A344356. %K A344352 nonn %O A344352 1,1 %A A344352 _David Consiglio, Jr._, May 15 2021