cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344353 Numbers that are the sum of four fourth powers in exactly four ways.

This page as a plain text file.
%I A344353 #13 Jul 31 2021 22:12:05
%S A344353 236674,282018,300834,334818,478338,637794,650034,650658,708483,
%T A344353 708834,729938,789378,816578,832274,849954,941859,989043,1042083,
%U A344353 1045539,1099203,1099458,1102258,1179378,1243074,1257954,1283874,1323234,1334979,1339074,1342979,1352898,1357059,1379043,1518578
%N A344353 Numbers that are the sum of four fourth powers in exactly four ways.
%C A344353 Differs from A344352 at term 52 because 2147874 = 2^4 + 14^4 + 31^4 + 33^4 = 4^4 + 23^4 + 27^4 + 34^4 = 7^4 + 21^4 + 28^4 + 34^4 = 12^4 + 17^4 + 29^4 + 34^4 = 14^4 + 18^4 + 19^4 + 37^4.
%H A344353 David Consiglio, Jr., <a href="/A344353/b344353.txt">Table of n, a(n) for n = 1..20000</a>
%e A344353 300834 is a term of this sequence because 300834 = 1^4 + 4^4 + 12^4 + 23^4 = 1^4 + 16^4 + 18^4 + 19^4 = 3^4 + 6^4 + 18^4 + 21^4 = 7^4 + 14^4 + 16^4 + 21^4.
%o A344353 (Python)
%o A344353 from itertools import combinations_with_replacement as cwr
%o A344353 from collections import defaultdict
%o A344353 keep = defaultdict(lambda: 0)
%o A344353 power_terms = [x**4 for x in range(1,200)]
%o A344353 count = 1
%o A344353 for pos in cwr(power_terms,4):
%o A344353     tot = sum(pos)
%o A344353     keep[tot] += 1
%o A344353     count += 1
%o A344353 rets = sorted([k for k,v in keep.items() if v == 4])
%o A344353 for x in range(len(rets)):
%o A344353     print(rets[x])
%Y A344353 Cf. A343972, A344242, A344278, A344352, A344355, A344357.
%K A344353 nonn
%O A344353 1,1
%A A344353 _David Consiglio, Jr._, May 15 2021