cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344355 Numbers that are the sum of five fourth powers in exactly four ways.

This page as a plain text file.
%I A344355 #12 Jul 31 2021 22:02:56
%S A344355 20995,21235,31250,41474,43235,43250,43315,43490,43859,45139,46290,
%T A344355 47570,51939,53234,53299,54994,56274,57379,57410,57779,59329,63970,
%U A344355 67010,68035,68290,71795,71954,73730,73954,75714,75794,77890,82099,84499,86275,86450,87730,92500,93474,93859,94130,94210,96194
%N A344355 Numbers that are the sum of five fourth powers in exactly four ways.
%C A344355 Differs from A344354 at term 22 because 59779 = 1^4 + 1^4 + 5^4 + 12^4 + 14^4 = 1^4 + 6^4 + 6^4 + 9^4 + 15^4 = 2^4 + 9^4 + 10^4 + 11^4 + 13^4 = 4^4 + 7^4 + 7^4 + 8^4 + 15^4 = 7^4 + 7^4 + 9^4 + 10^4 + 14^4.
%H A344355 David Consiglio, Jr., <a href="/A344355/b344355.txt">Table of n, a(n) for n = 1..20000</a>
%e A344355 31250 is a term of this sequence because 31250 = 2^4 + 2^4 + 4^4 + 7^4 + 13^4 = 2^4 + 3^4 + 6^4 + 6^4 + 13^4 = 4^4 + 6^4 + 7^4 + 9^4 + 12^4 = 5^4 + 5^4 + 10^4 + 10^4 + 10^4.
%o A344355 (Python)
%o A344355 from itertools import combinations_with_replacement as cwr
%o A344355 from collections import defaultdict
%o A344355 keep = defaultdict(lambda: 0)
%o A344355 power_terms = [x**4 for x in range(1, 50)]
%o A344355 for pos in cwr(power_terms, 5):
%o A344355     tot = sum(pos)
%o A344355     keep[tot] += 1
%o A344355 rets = sorted([k for k, v in keep.items() if v == 4])
%o A344355 for x in range(len(rets)):
%o A344355     print(rets[x])
%Y A344355 Cf. A344035, A344244, A344353, A344354, A344359, A344519, A345816.
%K A344355 nonn
%O A344355 1,1
%A A344355 _David Consiglio, Jr._, May 15 2021