cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344357 Numbers that are the sum of four fourth powers in exactly five ways.

This page as a plain text file.
%I A344357 #12 Jul 31 2021 22:12:09
%S A344357 2147874,2266338,2690658,3189603,3464178,3754674,4030419,4165794,
%T A344357 4457298,4884114,5229378,5978883,5980178,5981283,6014178,6134994,
%U A344357 6258723,6313953,6400194,6612354,7088898,7498323,7811874,7918498,8064018,8292323,8630259,9146034,9269523,9388978,9397683,9726978
%N A344357 Numbers that are the sum of four fourth powers in exactly five ways.
%C A344357 Differs from A344356 at term 7 because 3847554 = 2^4 + 13^4 + 29^4 + 42^4 = 2^4 + 21^4 + 22^4 + 43^4 = 6^4 + 11^4 + 17^4 + 44^4 = 6^4 + 31^4 + 32^4 + 37^4 = 9^4 + 29^4 + 32^4 + 38^4 = 13^4 + 26^4 + 32^4 + 39^4.
%H A344357 David Consiglio, Jr., <a href="/A344357/b344357.txt">Table of n, a(n) for n = 1..20000</a>
%e A344357 2690658 is a term of this sequence because 2690658 = 2^4 + 8^4 + 33^4 + 35^4 = 3^4 + 4^4 + 19^4 + 40^4 = 7^4 + 8^4 + 30^4 + 37^4 = 9^4 + 21^4 + 30^4 + 36^4 = 16^4 + 25^4 + 32^4 + 33^4.
%o A344357 (Python)
%o A344357 from itertools import combinations_with_replacement as cwr
%o A344357 from collections import defaultdict
%o A344357 keep = defaultdict(lambda: 0)
%o A344357 power_terms = [x**4 for x in range(1, 50)]
%o A344357 for pos in cwr(power_terms, 4):
%o A344357     tot = sum(pos)
%o A344357     keep[tot] += 1
%o A344357 rets = sorted([k for k, v in keep.items() if v == 5])
%o A344357 for x in range(len(rets)):
%o A344357     print(rets[x])
%Y A344357 Cf. A343986, A344353, A344356, A344359, A344365, A344921.
%K A344357 nonn
%O A344357 1,1
%A A344357 _David Consiglio, Jr._, May 15 2021