cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344359 Numbers that are the sum of five fourth powers in exactly five ways.

This page as a plain text file.
%I A344359 #14 Jul 31 2021 22:02:59
%S A344359 59779,67859,93394,108274,112850,136915,142354,151475,161459,168979,
%T A344359 181219,183539,183604,185299,187699,189394,193379,195394,199090,
%U A344359 199474,200979,201874,202979,203299,205859,211330,212419,213730,217810,217890,221779,223090,223155,223714,226514,227779,231235
%N A344359 Numbers that are the sum of five fourth powers in exactly five ways.
%C A344359 Differs from A344358 at term 8 because 151300 = 3^4 + 3^4 + 3^4 + 12^4 + 19^4 = 3^4 + 11^4 + 11^4 + 14^4 + 17^4 = 3^4 + 13^4 + 13^4 + 13^4 + 16^4 = 6^4 + 9^4 + 9^4 + 9^4 + 19^4 = 7^4 + 11^4 + 11^4 + 11^4 + 18^4 = 8^4 + 9^4 + 13^4 + 13^4 + 17^4.
%H A344359 David Consiglio, Jr., <a href="/A344359/b344359.txt">Table of n, a(n) for n = 1..20000</a>
%e A344359 93394 is a term of this sequence because 93394 = 1^4 + 4^4 + 8^4 + 14^4 + 15^4 = 1^4 + 6^4 + 12^4 + 12^4 + 15^4 = 1^4 + 9^4 + 10^4 + 14^4 + 14^4 = 5^4 + 6^4 + 11^4 + 14^4 + 14^4 = 5^4 + 7^4 + 8^4 + 12^4 + 16^4.
%o A344359 (Python)
%o A344359 from itertools import combinations_with_replacement as cwr
%o A344359 from collections import defaultdict
%o A344359 keep = defaultdict(lambda: 0)
%o A344359 power_terms = [x**4 for x in range(1, 50)]
%o A344359 for pos in cwr(power_terms, 5):
%o A344359     tot = sum(pos)
%o A344359     keep[tot] += 1
%o A344359 rets = sorted([k for k, v in keep.items() if v == 5])
%o A344359 for x in range(len(rets)):
%o A344359     print(rets[x])
%Y A344359 Cf. A343988, A344355, A344357, A344358, A344941, A345817, A346257.
%K A344359 nonn
%O A344359 1,1
%A A344359 _David Consiglio, Jr._, May 15 2021