This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344359 #14 Jul 31 2021 22:02:59 %S A344359 59779,67859,93394,108274,112850,136915,142354,151475,161459,168979, %T A344359 181219,183539,183604,185299,187699,189394,193379,195394,199090, %U A344359 199474,200979,201874,202979,203299,205859,211330,212419,213730,217810,217890,221779,223090,223155,223714,226514,227779,231235 %N A344359 Numbers that are the sum of five fourth powers in exactly five ways. %C A344359 Differs from A344358 at term 8 because 151300 = 3^4 + 3^4 + 3^4 + 12^4 + 19^4 = 3^4 + 11^4 + 11^4 + 14^4 + 17^4 = 3^4 + 13^4 + 13^4 + 13^4 + 16^4 = 6^4 + 9^4 + 9^4 + 9^4 + 19^4 = 7^4 + 11^4 + 11^4 + 11^4 + 18^4 = 8^4 + 9^4 + 13^4 + 13^4 + 17^4. %H A344359 David Consiglio, Jr., <a href="/A344359/b344359.txt">Table of n, a(n) for n = 1..20000</a> %e A344359 93394 is a term of this sequence because 93394 = 1^4 + 4^4 + 8^4 + 14^4 + 15^4 = 1^4 + 6^4 + 12^4 + 12^4 + 15^4 = 1^4 + 9^4 + 10^4 + 14^4 + 14^4 = 5^4 + 6^4 + 11^4 + 14^4 + 14^4 = 5^4 + 7^4 + 8^4 + 12^4 + 16^4. %o A344359 (Python) %o A344359 from itertools import combinations_with_replacement as cwr %o A344359 from collections import defaultdict %o A344359 keep = defaultdict(lambda: 0) %o A344359 power_terms = [x**4 for x in range(1, 50)] %o A344359 for pos in cwr(power_terms, 5): %o A344359 tot = sum(pos) %o A344359 keep[tot] += 1 %o A344359 rets = sorted([k for k, v in keep.items() if v == 5]) %o A344359 for x in range(len(rets)): %o A344359 print(rets[x]) %Y A344359 Cf. A343988, A344355, A344357, A344358, A344941, A345817, A346257. %K A344359 nonn %O A344359 1,1 %A A344359 _David Consiglio, Jr._, May 15 2021