cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344379 Triangle read by rows: T(n,k) is the number of labeled 3-regular digraphs (multiple arcs and loops allowed) on n nodes with k components.

Original entry on oeis.org

1, 3, 1, 45, 9, 1, 1782, 207, 18, 1, 142164, 10260, 585, 30, 1, 19943830, 953424, 35235, 1305, 45, 1, 4507660380, 151369792, 3731049, 93555, 2520, 63, 1, 1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1, 757560406751120, 14455803484728
Offset: 1

Views

Author

R. J. Mathar, May 16 2021

Keywords

Comments

Derived by interpreting A001500 as the number of labeled 3-regular digraphs (in-degree and out-degree at each node=3), without regarding the trace (which means loops are allowed) and no limit on the individual entries (so multiple arcs in the same direction between nodes are allowed).
Then the formula of A123543 (Gilbert's article) allows these values to be refined by the number of weakly connected components.

Examples

			Triangle begins:
              1;
              3,           1;
             45,           9,         1;
           1782,         207,        18,        1;
         142164,       10260,       585,       30,      1;
       19943830,      953424,     35235,     1305,     45,    1;
     4507660380,   151369792,   3731049,    93555,   2520,   63,  1;
  1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1;
...
		

Crossrefs

Cf. A307804 (2-regular analog), A001500 (row sums), A045943 (subdiagonal).

Programs

  • Maple
    # Given a list L[1], L[2],... for labeled not necessarily connected graphs, generate
    # triangle of labeled graphs with k weakly connected components.
    lblNonc := proc(L::list)
        local k,x,g,Lkx,t,Lkxt,n,c ;
        add ( op(k,L)*x^k/k!,k=1..nops(L)) ;
        log(1+%) ; # formula from A123543
        g := taylor(%,x=0,nops(L)) ;
        seq( coeftayl(g,x=0,i)*i!,i=1..nops(L)) ;
        print(lc) ;# first column
        Lkx := add ( coeftayl(g,x=0,i)*x^i,i=1..nops(L)) ;
        Lkxt := exp(t*%) ;
        for n from 0 to nops(L)-1 do
            tmp := coeftayl(Lkxt,x=0,n) ;
            for c from 0 to n do
                printf("%a ", coeftayl(tmp,t=0,c)*n!) ;
            end do:
            printf("\n") ;
        end do:
    end proc:
    L := [1, 4, 55, 2008, 153040, 20933840, 4662857360, 1579060246400, 772200774683520, 523853880779443200, 477360556805016931200, 569060910292172349004800, 868071731152923490921728000, 1663043727673392444887284377600, 3937477620391471128913917360384000] ;
    lblNonc(L) ;

Formula

T(n,n) = 1. [n nodes, each with a triple loop].
T(n,n-1) = A045943(n-1). [n-1 isolated nodes, one labeled pair with n(n-1)/2 choices of labels and 3 choices of zero, one or two loops at the lower label].
T(n,k) = Sum_{Compositions n=n_1+n_2+...n_k, n_i>=1} multinomial(n; n_1,n_2,...,n_k) * T(n_1,1) * T(n_2,1) * ... *T(n_k,1) / k!.