A344379 Triangle read by rows: T(n,k) is the number of labeled 3-regular digraphs (multiple arcs and loops allowed) on n nodes with k components.
1, 3, 1, 45, 9, 1, 1782, 207, 18, 1, 142164, 10260, 585, 30, 1, 19943830, 953424, 35235, 1305, 45, 1, 4507660380, 151369792, 3731049, 93555, 2520, 63, 1, 1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1, 757560406751120, 14455803484728
Offset: 1
Examples
Triangle begins: 1; 3, 1; 45, 9, 1; 1782, 207, 18, 1; 142164, 10260, 585, 30, 1; 19943830, 953424, 35235, 1305, 45, 1; 4507660380, 151369792, 3731049, 93555, 2520, 63, 1; 1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1; ...
Links
- E. N. Gilbert, Enumeration of labelled graphs, Can. J. Math. 8 (1956) 405-411.
Programs
-
Maple
# Given a list L[1], L[2],... for labeled not necessarily connected graphs, generate # triangle of labeled graphs with k weakly connected components. lblNonc := proc(L::list) local k,x,g,Lkx,t,Lkxt,n,c ; add ( op(k,L)*x^k/k!,k=1..nops(L)) ; log(1+%) ; # formula from A123543 g := taylor(%,x=0,nops(L)) ; seq( coeftayl(g,x=0,i)*i!,i=1..nops(L)) ; print(lc) ;# first column Lkx := add ( coeftayl(g,x=0,i)*x^i,i=1..nops(L)) ; Lkxt := exp(t*%) ; for n from 0 to nops(L)-1 do tmp := coeftayl(Lkxt,x=0,n) ; for c from 0 to n do printf("%a ", coeftayl(tmp,t=0,c)*n!) ; end do: printf("\n") ; end do: end proc: L := [1, 4, 55, 2008, 153040, 20933840, 4662857360, 1579060246400, 772200774683520, 523853880779443200, 477360556805016931200, 569060910292172349004800, 868071731152923490921728000, 1663043727673392444887284377600, 3937477620391471128913917360384000] ; lblNonc(L) ;
Formula
T(n,n) = 1. [n nodes, each with a triple loop].
T(n,n-1) = A045943(n-1). [n-1 isolated nodes, one labeled pair with n(n-1)/2 choices of labels and 3 choices of zero, one or two loops at the lower label].
T(n,k) = Sum_{Compositions n=n_1+n_2+...n_k, n_i>=1} multinomial(n; n_1,n_2,...,n_k) * T(n_1,1) * T(n_2,1) * ... *T(n_k,1) / k!.
Comments