cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344384 Prime numbers p such that p-1 or p+1 is a number of least prime signature (A025487).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, 47, 59, 61, 71, 73, 97, 127, 179, 181, 191, 193, 211, 239, 241, 257, 359, 383, 419, 421, 431, 433, 479, 577, 719, 769, 839, 863, 1151, 1153, 1259, 1297, 1439, 1801, 2161, 2309, 2311, 2521, 2591, 2593, 2879, 3359, 3361
Offset: 1

Views

Author

Hal M. Switkay, May 16 2021

Keywords

Comments

The corresponding numbers of least prime signature are A344385.
19 is the first prime not in this sequence.
This sequence unites many familiar sequences of primes, including Fermat primes (A019434), Mersenne primes (A000668), primorial primes (A018239 and A057705), factorial primes (A088054), A007505, and A039687.
Questions: 1) Is this sequence infinite? 2) Is log(a(n)) = O(log(n)^2)?

Examples

			17 is a term because 17 - 1 = 16 is a number of least prime signature.
		

Crossrefs

Programs

  • Mathematica
    {2}~Join~Select[Prime@ Range[2, 900], AnyTrue[# + {-1, 1}, Times @@ MapIndexed[Prime[First[#2]]^#1 &, Sort[FactorInteger[#][[All, -1]], Greater] ] == # &] &] (* Michael De Vlieger, May 16 2021 *)