This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344391 #14 May 18 2021 07:26:09 %S A344391 1,1,1,1,1,2,1,3,2,1,4,6,1,5,12,6,1,6,20,24,1,7,30,60,24,1,8,42,120, %T A344391 120,1,9,56,210,360,120,1,10,72,336,840,720,1,11,90,504,1680,2520,720, %U A344391 1,12,110,720,3024,6720,5040,1,13,132,990,5040,15120,20160,5040 %N A344391 T(n, k) = binomial(n - k, k) * factorial(k), for n >= 0 and 0 <= k <= floor(n/2). Triangle read by rows. %C A344391 The antidiagonal representation of the falling factorials (A008279). %F A344391 T(n, k) = RisingFactorial(n + 1 - 2*k, k). %F A344391 T(n, k) = (-1)^k*FallingFactorial(2*k - n - 1, k). %e A344391 [ 0] [1] %e A344391 [ 1] [1] %e A344391 [ 2] [1, 1] %e A344391 [ 3] [1, 2] %e A344391 [ 4] [1, 3, 2] %e A344391 [ 5] [1, 4, 6] %e A344391 [ 6] [1, 5, 12, 6] %e A344391 [ 7] [1, 6, 20, 24] %e A344391 [ 8] [1, 7, 30, 60, 24] %e A344391 [ 9] [1, 8, 42, 120, 120] %e A344391 [10] [1, 9, 56, 210, 360, 120] %e A344391 [11] [1, 10, 72, 336, 840, 720] %p A344391 T := (n, k) -> pochhammer(n + 1 - 2*k, k): %p A344391 seq(print(seq(T(n, k), k=0..n/2)), n = 0..11); %o A344391 (Sage) %o A344391 def T(n, k): return rising_factorial(n + 1 - 2*k, k) %o A344391 def T(n, k): return (-1)^k*falling_factorial(2*k - n - 1, k) %o A344391 def T(n, k): return binomial(n - k, k) * factorial(k) %o A344391 print(flatten([[T(n, k) for k in (0..n//2)] for n in (0..11)])) %Y A344391 Cf. A122852 (row sums). %Y A344391 Cf. A008279, A122851. %K A344391 nonn,tabf %O A344391 0,6 %A A344391 _Peter Luschny_, May 17 2021