cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344394 a(n) = binomial(n, n/2 - 1/4 + (-1)^n/4)*hypergeom([-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8], [n/2 + 7/4 + (-1)^n/4], 4).

Original entry on oeis.org

1, 1, 2, 5, 9, 25, 44, 133, 230, 726, 1242, 4037, 6853, 22737, 38376, 129285, 217242, 740554, 1239980, 4266830, 7123765, 24701425, 41141916, 143567173, 238637282, 837212650, 1389206210, 4896136845, 8112107475, 28703894775, 47495492400, 168640510725, 278722764954
Offset: 0

Views

Author

Peter Luschny, May 19 2021

Keywords

Comments

Related to the Motzkin triangle A064189 counting certain lattice paths.

Crossrefs

Cf. A026300, A064189, A026302 (even bisection), A344396 (odd bisection), A327871.

Programs

  • Maple
    alias(C=binomial):
    a := n -> add(C(n, j)*(C(n - j, j + n/2 - 1/4 + (-1)^n/4) - C(n - j, j + n/2 + 7/4 + (-1)^n/4)), j = 0..n): seq(a(n), n = 0..32);
  • Mathematica
    a[n_] := Binomial[n, n/2 - 1/4 + (-1)^n/4] Hypergeometric2F1[-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8, n/2 + 7/4 + (-1)^n/4, 4];
    Table[a[n], {n, 0, 32}]

Formula

a(n) = Sum_{j = 0..n} C(n, j)*(C(n - j, j + n/2 - 1/4 + (-1)^n/4) - C(n - j, j + n/2 + 7/4 + (-1)^n/4)).
a(n) = A064189(n, floor(n/2)), the middle column of the Motzkin triangle.
a(n) = A026300(n, ceiling(n/2)).