This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344398 #12 May 09 2024 07:39:21 %S A344398 1,1,10,111,8676,243005,49729758,2634606331,1026912225160, %T A344398 88276603008249,55954905981282210,7103694104486331671, %U A344398 6655958151527584785900,1171100778886715057133493,1521436331153097968932487206,354408430829377435361459172915,609729139653483641913607434550800 %N A344398 a(n) = (-1)^n * F_{n}((-1)^n * n), where F_{n}(x) is the Fubini polynomial. %p A344398 F := proc(n) option remember; if n = 0 then return 1 fi; %p A344398 expand(add(binomial(n, k)*F(n-k)*x, k = 1..n)) end: %p A344398 a := n -> (-1)^n*subs(x = (-1)^n*n, F(n)): %p A344398 seq(a(n), n = 0..17); %t A344398 F[n_][x_] := If[n == 0, 1, Sum[k! StirlingS2[n, k] x^k, {k, 0, n}]]; %t A344398 a[n_] := (-1)^n F[n][(-1)^n*n]; %t A344398 Table[a[n], {n, 0, 16}] (* _Jean-François Alcover_, May 09 2024 *) %o A344398 (SageMath) %o A344398 @cached_function %o A344398 def F(n): %o A344398 R.<x> = PolynomialRing(ZZ) %o A344398 if n == 0: return R(1) %o A344398 return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n))) %o A344398 def a(n): %o A344398 return (-1)^n*F(n).substitute(x = (-1)^n*n) %o A344398 print([a(n) for n in range(17)]) %Y A344398 The coefficients of the Fubini polynomials are A131689. %Y A344398 Cf. A094420. %K A344398 nonn %O A344398 0,3 %A A344398 _Peter Luschny_, May 21 2021