This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344413 #20 Oct 10 2024 15:20:32 %S A344413 1,3,7,9,10,13,19,21,22,25,27,28,29,30,34,37,39,43,46,49,52,53,55,57, %T A344413 61,62,63,66,70,71,75,76,79,81,82,84,85,87,88,89,90,91,94,100,101,102, %U A344413 107,111,113,115,116,117,118,121,129,130,131,133,134,136,138 %N A344413 Numbers n whose sum of prime indices A056239(n) is even and is at least twice the number of prime factors A001222(n). %C A344413 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A344413 Also Heinz numbers of integer partitions of even numbers m with at most m/2 parts, counted by A209816 riffled with zeros, or A110618 with odd positions zeroed out. %H A344413 Robert Israel, <a href="/A344413/b344413.txt">Table of n, a(n) for n = 1..10000</a> %F A344413 Members m of A300061 such that A056239(m) >= 2*A001222(m). %e A344413 The sequence of terms together with their prime indices begins: %e A344413 1: {} 37: {12} 75: {2,3,3} %e A344413 3: {2} 39: {2,6} 76: {1,1,8} %e A344413 7: {4} 43: {14} 79: {22} %e A344413 9: {2,2} 46: {1,9} 81: {2,2,2,2} %e A344413 10: {1,3} 49: {4,4} 82: {1,13} %e A344413 13: {6} 52: {1,1,6} 84: {1,1,2,4} %e A344413 19: {8} 53: {16} 85: {3,7} %e A344413 21: {2,4} 55: {3,5} 87: {2,10} %e A344413 22: {1,5} 57: {2,8} 88: {1,1,1,5} %e A344413 25: {3,3} 61: {18} 89: {24} %e A344413 27: {2,2,2} 62: {1,11} 90: {1,2,2,3} %e A344413 28: {1,1,4} 63: {2,2,4} 91: {4,6} %e A344413 29: {10} 66: {1,2,5} 94: {1,15} %e A344413 30: {1,2,3} 70: {1,3,4} 100: {1,1,3,3} %e A344413 34: {1,7} 71: {20} 101: {26} %e A344413 For example, 75 has 3 prime indices {2,3,3} with sum 8 >= 2*3, so 75 is in the sequence. %p A344413 filter:= proc(n) local F,a,t; %p A344413 F:= ifactors(n)[2]; %p A344413 a:= add((numtheory:-pi(t[1])-2)*t[2],t=F); %p A344413 a::even and a >= 0 %p A344413 end proc: %p A344413 select(filter, [$1..300]); # _Robert Israel_, Oct 10 2024 %t A344413 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A344413 Select[Range[100],EvenQ[Total[primeMS[#]]]&&PrimeOmega[#]<=Total[primeMS[#]]/2&] %Y A344413 These are the Heinz numbers of partitions counted by A209816 and A110618. %Y A344413 A subset of A300061 (sum of prime indices is even). %Y A344413 The conjugate version appears to be A320924 (allowing odd weights: A322109). %Y A344413 The case of equality is A340387. %Y A344413 Allowing odd weights gives A344291. %Y A344413 The 5-smooth case is A344295, or A344293 allowing odd weights. %Y A344413 The opposite version allowing odd weights is A344296. %Y A344413 The conjugate opposite version allowing odd weights is A344414. %Y A344413 The case of equality in the conjugate case is A344415. %Y A344413 The conjugate opposite version is A344416, counted by A000070. %Y A344413 A001222 counts prime factors with multiplicity. %Y A344413 A027187 counts partitions of even length, ranked by A028260. %Y A344413 A056239 adds up prime indices, row sums of A112798. %Y A344413 A058696 counts partitions of even numbers, ranked by A300061. %Y A344413 A301987 lists numbers whose sum of prime indices equals their product. %Y A344413 A330950 counts partitions of n with Heinz number divisible by n. %Y A344413 A334201 adds up all prime indices except the greatest. %Y A344413 Cf. A001414, A025065, A067538, A301988, A316413, A316428, A325037, A325038, A325044, A338914, A344294, A344297. %K A344413 nonn %O A344413 1,2 %A A344413 _Gus Wiseman_, May 19 2021