This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344417 #9 May 23 2021 00:20:08 %S A344417 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,4,1,1, %T A344417 1,5,1,1,1,2,1,1,1,2,2,1,1,4,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,7,1,1,1,2, %U A344417 1,1,1,5,1,1,2,2,1,1,1,4,4,1,1,2,1,1,1 %N A344417 Number of palindromic factorizations of n. %C A344417 A palindrome is a sequence that is the same whether it is read forward or in reverse. A palindromic factorization of n is a finite multiset of positive integers > 1 with product n that can be permuted into a palindrome. %F A344417 a(2^n) = A025065(n). %F A344417 a(n) = A057567(A000188(n)). - _Andrew Howroyd_, May 22 2021 %e A344417 The palindromic factorizations for n = 2, 4, 16, 36, 64, 144: %e A344417 (2) (4) (16) (36) (64) (144) %e A344417 (2*2) (4*4) (6*6) (8*8) (12*12) %e A344417 (2*2*4) (2*2*9) (4*4*4) (4*4*9) %e A344417 (2*2*2*2) (3*3*4) (2*2*16) (4*6*6) %e A344417 (2*2*3*3) (2*2*4*4) (2*2*36) %e A344417 (2*2*2*2*4) (3*3*16) %e A344417 (2*2*2*2*2*2) (2*2*6*6) %e A344417 (3*3*4*4) %e A344417 (2*2*2*2*9) %e A344417 (2*2*3*3*4) %e A344417 (2*2*2*2*3*3) %t A344417 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A344417 palQ[y_]:=Select[Permutations[y],#==Reverse[#]&]!={}; %t A344417 Table[Length[Select[facs[n],palQ]],{n,50}] %Y A344417 Positions of 1's are A005117. %Y A344417 The case of palindromic compositions is A016116. %Y A344417 The additive version (palindromic partitions) is A025065. %Y A344417 The case of palindromic prime signature is A242414. %Y A344417 The case of palindromic plane trees is A319436. %Y A344417 A001055 counts factorizations. %Y A344417 A229153 ranks non-palindromic partitions. %Y A344417 A265640 ranks palindromic partitions. %Y A344417 Cf. A000041, A000070, A000188, A004526, A030229, A056503, A057567, A082293, A344414. %K A344417 nonn %O A344417 1,4 %A A344417 _Gus Wiseman_, May 22 2021