This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344422 #84 Aug 30 2024 18:35:32 %S A344422 1,2,4,6,44,66,252,2112,2772,6336,27972,48384,219912,252252,696696, %T A344422 828828,2114112,4228224,21333312,42666624,63999936,234666432, %U A344422 2154664512,2329559232,4815995184,8402442048,21354645312,40362626304,63708380736,211887788112 %N A344422 Palindromes having more divisors than all smaller palindromes. %C A344422 A000005(a(n)) = 1, 2, 3, 4, 6, 8, 18, 28, 36, 42, 48, 72, 96, 108, 128, 144, 168, 192, 336, 384, .... - _Felix Fröhlich_, May 19 2021 %C A344422 From _Jon E. Schoenfield_, Jun 22 2021: (Start) %C A344422 There exists at least one m-digit term for every m in 1..22 except 21 (see the b-file). %C A344422 Conjecture: all terms after a(1)=1 are even. (End) %H A344422 Jon E. Schoenfield, <a href="/A344422/b344422.txt">Table of n, a(n) for n = 1..59</a> (all terms < 10^22) %H A344422 David A. Corneth, <a href="/A344422/a344422.gp.txt">PARI program</a> %H A344422 Jon E. Schoenfield, <a href="/A344422/a344422.cs.txt">C# program</a> %F A344422 A000005(a(n)) = A345250(n). %e A344422 Terms include: 4 (3 divisors); 6 (4 divisors); 44 (6 divisors); 66 (8 divisors); 252 (18 divisors). %t A344422 pal=Union@Flatten[Table[r=IntegerDigits@n;FromDigits/@(Join[r,#]&/@{Reverse@r,Rest@Reverse@r}),{n,10^5}]];m=0;lst={};Do[s=DivisorSigma[0,k];If[s>m,AppendTo[lst,k];m=s],{k,pal}];lst (* _Giorgos Kalogeropoulos_, Dec 08 2021 *) %o A344422 (C#) // See C# link. _Jon E. Schoenfield_, Jun 19 2021 %o A344422 (PARI) \\ See PARI link. _David A. Corneth_, May 18 2021 %Y A344422 Cf. A000005, A002113 (palindromes), A076888 (their number of divisors), A002182, A084324, A093036, A345250. %K A344422 nonn,base %O A344422 1,2 %A A344422 _Bhupendra Kumar Singh_, May 17 2021 %E A344422 Data corrected and extended by _David A. Corneth_, May 18 2021