This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344429 #24 Nov 04 2023 06:40:55 %S A344429 1,-3,-34,-96,-3399,30239,-624046,-4482626,-32249230,9768165230, %T A344429 -186975207617,-2150337557747,-327482869358214,6894274639051756, %U A344429 539094536846680025,8044964790023844733,-707278869236116107432,-12275330572755863672628,-2190860499375418948848067 %N A344429 a(n) = Sum_{k=1..n} mu(k) * k^n. %H A344429 Seiichi Manyama, <a href="/A344429/b344429.txt">Table of n, a(n) for n = 1..386</a> %t A344429 a[n_] := Sum[MoebiusMu[k] * k^n, {k,1,n}]; Array[a, 20] (* _Amiram Eldar_, May 19 2021 *) %o A344429 (PARI) a(n) = sum(k=1, n, moebius(k)*k^n); %o A344429 (Python) %o A344429 from functools import lru_cache %o A344429 from math import comb %o A344429 from sympy import bernoulli %o A344429 @lru_cache(maxsize=None) %o A344429 def faulhaber(n,p): %o A344429 """ Faulhaber's formula for calculating Sum_{k=1..n} k^p %o A344429 requires sympy version 1.12+ where bernoulli(1) = 1/2 %o A344429 """ %o A344429 return sum(comb(p+1,k)*bernoulli(k)*n**(p-k+1) for k in range(p+1))//(p+1) %o A344429 @lru_cache(maxsize=None) %o A344429 def A344429(n,m=None): %o A344429 if n <= 1: %o A344429 return 1 %o A344429 if m is None: %o A344429 m=n %o A344429 c, j = 1, 2 %o A344429 k1 = n//j %o A344429 while k1 > 1: %o A344429 j2 = n//k1 + 1 %o A344429 c += (faulhaber(j-1,m)-faulhaber(j2-1,m))*A344429(k1,m) %o A344429 j, k1 = j2, n//j2 %o A344429 return c+faulhaber(j-1,m)-faulhaber(n,m) # _Chai Wah Wu_, Nov 02 2023 %Y A344429 Cf. A002321, A008683, A031971, A068340, A321222, A332468, A336276, A336277, A336278, A336279, A344430. %K A344429 sign %O A344429 1,2 %A A344429 _Seiichi Manyama_, May 19 2021