This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344447 #26 Aug 19 2021 04:47:02 %S A344447 1,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,1,1,0,0,0,1,1,0,0,1,0,1,1,1,0,1,1,0, %T A344447 0,1,1,1,0,0,0,1,0,0,2,2,1,0,0,2,1,0,0,2,1,1,1,0,1,1,1,1,0,1,0,3,2,1, %U A344447 0,0,1,2,1,0,0,2,3,2,1,1,0,1,2,2,1,1,0,1,1,2,3,2,1,0,0,1,3,3,1,0,0,2,3,4,2,1,1 %N A344447 Number T(n,k) of partitions of n into k semiprimes; triangle T(n,k), n>=0, read by rows. %C A344447 T(n,k) is defined for all n,k >= 0. The triangle contains in each row n only the terms for k=0 and then up to the last positive T(n,k) (if it exists). %H A344447 Alois P. Heinz, <a href="/A344447/b344447.txt">Rows n = 0..500, flattened</a> %F A344447 T(n,k) = [x^n y^k] 1/Product_{j>=1} (1-y*x^A001358(j)). %F A344447 Sum_{k>0} k * T(n,k) = A281617(n). %e A344447 Triangle T(n,k) begins: %e A344447 1 ; %e A344447 0 ; %e A344447 0 ; %e A344447 0 ; %e A344447 0, 1 ; %e A344447 0 ; %e A344447 0, 1 ; %e A344447 0 ; %e A344447 0, 0, 1 ; %e A344447 0, 1 ; %e A344447 0, 1, 1 ; %e A344447 0 ; %e A344447 0, 0, 1, 1 ; %e A344447 0, 0, 1 ; %e A344447 0, 1, 1, 1 ; %e A344447 0, 1, 1 ; %e A344447 0, 0, 1, 1, 1 ; %e A344447 0, 0, 0, 1 ; %e A344447 0, 0, 2, 2, 1 ; %e A344447 0, 0, 2, 1 ; %e A344447 0, 0, 2, 1, 1, 1 ; %e A344447 ... %p A344447 h:= proc(n) option remember; `if`(n=0, 0, %p A344447 `if`(numtheory[bigomega](n)=2, n, h(n-1))) %p A344447 end: %p A344447 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A344447 `if`(i>n, 0, expand(x*b(n-i, h(min(n-i, i)))))+b(n, h(i-1)))) %p A344447 end: %p A344447 T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, degree(p))))(b(n, h(n))): %p A344447 seq(T(n), n=0..32); %t A344447 h[n_] := h[n] = If[n == 0, 0, %t A344447 If[PrimeOmega[n] == 2, n, h[n-1]]]; %t A344447 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, %t A344447 If[i > n, 0, Expand[x*b[n-i, h[Min[n-i, i]]]]] + b[n, h[i-1]]]]; %t A344447 T[n_] := Table[Coefficient[#, x, i], {i, 0, Max[0, Exponent[#, x]]}]&[b[n, h[n]]]; %t A344447 Table[T[n], {n, 0, 32}] // Flatten (* _Jean-François Alcover_, Aug 19 2021, after _Alois P. Heinz_ *) %Y A344447 Columns k=0-10 give: A000007, A064911, A072931, A344446, A340756, A344245, A344246, A344254, A344255, A344256, A344257. %Y A344447 Row sums give A101048. %Y A344447 T(4n,n) gives A000012. %Y A344447 Cf. A001358, A117278, A281617. %K A344447 nonn,tabf %O A344447 0,45 %A A344447 _Alois P. Heinz_, May 19 2021