This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344473 #11 May 20 2021 22:43:18 %S A344473 1,7,49,91,343,637,1729,2401,4459,8281,12103,16807,31213,53599,57967, %T A344473 84721,117649,157339,218491,375193,405769,593047,753571,823543, %U A344473 1101373,1529437,1983163,2626351,2840383,2989441,4151329,4877509,5274997,5764801,7709611 %N A344473 Numbers of the form (q1^b1)(q2^b2)(q3^b3)(q4^b4)(q5^b5)... where q1=7, q2=13, q3=19, q4=31, q5=37, ... (A002476) and b1>=b2>=b3>=b4>=b5... %C A344473 A343771 is a subsequence. %H A344473 Jianing Song, <a href="/A344473/b344473.txt">Table of n, a(n) for n = 1..10000</a> %e A344473 12103 is a term since 12103 = 7^2 * 13 * 19. %e A344473 22477 is not a term since 22477 = 7 * 13^2 * 19, the exponents are not nonincreasing. %o A344473 (PARI) \\ following program for A054994 %o A344473 list_A344473(lim) = %o A344473 { %o A344473 my(u = [1], v = List(), w = v, pr, t = 1); %o A344473 forprime(p = 7, , %o A344473 if (p % 3 > 1, next); %o A344473 t *= p; %o A344473 if (t > lim, %o A344473 break); %o A344473 listput(w, t) %o A344473 ); %o A344473 for (i = 1, #w, %o A344473 pr = 1; %o A344473 for (e = 1, logint(lim\ = 1, w[i]), %o A344473 pr *= w[i]; %o A344473 for (j = 1, #u, %o A344473 t = pr * u[j]; %o A344473 if (t > lim, %o A344473 break); %o A344473 listput(v, t) %o A344473 ) %o A344473 ); %o A344473 if (w[i] ^ 2 < lim, u = Set(concat(Vec(v), u)); v = List()); %o A344473 ); %o A344473 Set(concat(Vec(v), u)); %o A344473 } %o A344473 list_A344473(100000) %Y A344473 Cf. A002476, A343771, A054994. %K A344473 nonn,easy %O A344473 1,2 %A A344473 _Jianing Song_, May 20 2021