cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344476 Decimal expansion of the value of the Buchstab function at phi + 2 = (5 + sqrt(5))/2 (A296184).

This page as a plain text file.
%I A344476 #10 Jan 09 2025 10:13:26
%S A344476 5,6,0,9,3,8,6,3,9,6,9,2,7,7,1,6,3,3,4,6,0,0,4,1,1,6,3,6,8,0,5,5,6,9,
%T A344476 9,2,9,6,1,1,3,1,7,9,7,0,4,9,6,4,3,9,1,5,0,0,8,1,4,2,3,3,5,1,5,3,3,9,
%U A344476 9,3,9,9,8,5,0,1,7,7,3,7,7,4,4,7,2,9,4,1,9,2,5,5,9,5,2,4,9,1,8,4,8,9,5,7,8
%N A344476 Decimal expansion of the value of the Buchstab function at phi + 2 = (5 + sqrt(5))/2 (A296184).
%D A344476 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 286.
%H A344476 A. A. Bukhstab, <a href="http://mi.mathnet.ru/msb5649">Asymptotic estimates of a general number-theoretic function</a> (in Russian), Matematicheskii Sbornik, Vol. 44, No. 6 (1937) pp. 1239-1246.
%H A344476 Pieter Moree, A special value of Dickman's function, Math. Student, Vol. 64 (1995), pp. 47-50; <a href="https://schoolbooksarchive.azimpremjiuniversity.edu.in/handle/20.500.12497/11803">entire volume</a>.
%H A344476 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BuchstabFunction.html">Buchstab Function</a>.
%H A344476 Wikipedia, <a href="https://en.wikipedia.org/wiki/Buchstab_function">Buchstab function</a>.
%F A344476 Equals (1 + 2*log(phi) + log(phi)^2 - Pi^2/60)/(phi+2) (Moree, 1995).
%e A344476 0.56093863969277163346004116368055699296113179704964...
%t A344476 RealDigits[(1 + 2*Log[GoldenRatio] + Log[GoldenRatio]^2 - Pi^2/60)/(GoldenRatio + 2), 10, 100][[1]]
%o A344476 (PARI) my(phi = quadgen(5)); (1 + 2*log(phi) + log(phi)^2 - Pi^2/60)/(phi+2) \\ _Amiram Eldar_, Jan 09 2025
%Y A344476 Cf. A000796, A001622, A002390, A013661, A296184, A344475.
%K A344476 nonn,cons
%O A344476 0,1
%A A344476 _Amiram Eldar_, May 20 2021
%E A344476 More terms from _Amiram Eldar_, Jan 09 2025