A344481 Isolated single primes enclosed by four composites on square spiral board of odd numbers.
97, 157, 233, 257, 293, 307, 331, 337, 359, 367, 389, 397, 409, 439, 449, 479, 487, 499, 503, 563, 607, 613, 631, 653, 677, 683, 691, 709, 727, 743, 751, 761, 773, 853, 863, 887, 907, 911, 929, 937, 967, 971, 983, 1013, 1069, 1087, 1117, 1181, 1187, 1193, 1201
Offset: 1
Keywords
Examples
3 is not a term because two of the four neighbors (1, 5, 17 and 21) are primes. 97 is a term because 97 is a prime and all four neighbors (51, 95, 99 and 159) are composites (see the illustration in Links).
Links
Crossrefs
Cf. A341542.
Programs
-
Python
from sympy import prime, isprime; from math import sqrt, ceil def neib(m): n = int(ceil((sqrt(m)+1.0)/2.0)); L = [m,m,m,m] z1=4*n*n-12*n+10;z2=4*n*n-10*n+7;z3=4*n*n-8*n+5;z4=4*n*n-6*n+3;z5=4*n*n-4*n+1 L[0]+=1 if m