This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344482 #26 Aug 26 2021 10:44:57 %S A344482 2,3,2,5,7,3,11,5,13,17,7,19,11,23,13,29,31,17,37,19,41,23,43,29,47, %T A344482 53,31,59,37,61,41,67,43,71,47,73,79,53,83,59,89,61,97,67,101,71,103, %U A344482 73,107,109,79,113,83,127,89,131,97,137,101,139,103,149,107,151 %N A344482 Primes, each occurring twice, such that a(C(n)) = a(4*n-C(n)) = prime(n), where C is the Connell sequence (A001614). %C A344482 Terms can be arranged in an irregular triangle read by rows in which row r is a permutation P of the primes in the interval [prime(s), prime(s+rlen-1)], where s = 1+(r-1)*(r-2)/2, rlen = 2*r-1 = A005408(r-1) and r >= 1 (see example). %C A344482 P is the alternating (first term > second term < third term > fourth term < ...) permutation m -> 1, 1 -> 2, m+1 -> 3, 2 -> 4, m+2 -> 5, 3 -> 6, ..., rlen -> rlen where m = ceiling(rlen/2). %C A344482 The triangle has the following properties. %C A344482 Row lengths are the positive odd numbers (A005408). %C A344482 First column is A078721. %C A344482 Column 3 is A078722 (for n >= 1). %C A344482 Column 5 is A078724 (for n >= 2). %C A344482 Column 7 is A078725 (for n >= 3). %C A344482 Each even column is equal to the column preceding it. %C A344482 Row records (A011756) are in the right border. %C A344482 Indices of row records are the positive terms of A000290. %C A344482 Each row r contains r terms that are duplicated in the next row. %C A344482 In each row, the sum of terms which are not already listed in the sequence give A007468. %C A344482 For rows r >= 2, row sum is A007468(r)+A007468(r-1) and row product is A007467(r)*A007467(r-1). %F A344482 a(A001614(n)) = a(4*n-A001614(n)) = prime(n). %e A344482 Written as an irregular triangle the sequence begins: %e A344482 2; %e A344482 3, 2, 5; %e A344482 7, 3, 11, 5, 13; %e A344482 17, 7, 19, 11, 23, 13, 29; %e A344482 31, 17, 37, 19, 41, 23, 43, 29, 47; %e A344482 53, 31, 59, 37, 61, 41, 67, 43, 71, 47, 73; %e A344482 79, 53, 83, 59, 89, 61, 97, 67, 101, 71, 103, 73, 107; %e A344482 ... %e A344482 The triangle can be arranged as shown below so that, in every row, each odd position term is equal to the term immediately below it. %e A344482 2 %e A344482 3 2 5 %e A344482 7 3 11 5 13 %e A344482 17 7 19 11 23 13 29 %e A344482 31 17 37 19 41 23 43 29 47 %e A344482 ... %t A344482 nterms=64;a=ConstantArray[0,nterms];For[n=1;p=1,n<=nterms,n++,If[a[[n]]==0,a[[n]]=Prime[p];If[(d=4p-n)<=nterms,a[[d]]=a[[n]]];p++]]; a %t A344482 (* Second program, triangle rows *) %t A344482 nrows=8;Table[rlen=2r-1;Permute[Prime[Range[s=1+(r-1)(r-2)/2,s+rlen-1]],Join[Range[2,rlen,2],Range[1,rlen,2]]],{r,nrows}] %Y A344482 Cf. A000040, A117384, A000290, A001614, A005408, A007467, A007468, A011756. %Y A344482 Cf. A078721, A078722, A078724, A078725. %K A344482 nonn,tabf %O A344482 1,1 %A A344482 _Paolo Xausa_, Aug 16 2021