This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344499 #27 Jun 06 2024 13:08:24 %S A344499 1,0,1,0,1,1,0,3,2,1,0,13,10,3,1,0,75,74,21,4,1,0,541,730,219,36,5,1, %T A344499 0,4683,9002,3045,484,55,6,1,0,47293,133210,52923,8676,905,78,7,1,0, %U A344499 545835,2299754,1103781,194404,19855,1518,105,8,1,0,7087261,45375130,26857659,5227236,544505,39390,2359,136,9,1 %N A344499 T(n, k) = F(n - k, k), where F(n, x) is the Fubini polynomial. Triangle read by rows, T(n, k) for 0 <= k <= n. %C A344499 The array rows are recursively generated by applying the Akiyama-Tanigawa algorithm to the powers (see the Python implementation below). In this way the array becomes the image of A004248 under the AT-transformation when applied to the columns of A004248. This makes the array closely linked to A371761, which is generated in the same way, but applied to the rows of A004248. - _Peter Luschny_, Apr 27 2024 %F A344499 T(n, k) = (n - k)! * [x^(n - k)] (1 / (1 + k * (1 - exp(x)))). %F A344499 T(2*n, n) = A094420(n). %e A344499 Triangle starts: %e A344499 [0] 1; %e A344499 [1] 0, 1; %e A344499 [2] 0, 1, 1; %e A344499 [3] 0, 3, 2, 1; %e A344499 [4] 0, 13, 10, 3, 1; %e A344499 [5] 0, 75, 74, 21, 4, 1; %e A344499 [6] 0, 541, 730, 219, 36, 5, 1; %e A344499 [7] 0, 4683, 9002, 3045, 484, 55, 6, 1; %e A344499 [8] 0, 47293, 133210, 52923, 8676, 905, 78, 7, 1; %e A344499 [9] 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1; %e A344499 . %e A344499 Seen as an array A(n, k) = T(n + k, n): %e A344499 [0] [1, 0, 0, 0, 0, 0, 0, ... A000007 %e A344499 [1] [1, 1, 3, 13, 75, 541, 4683, ... A000670 %e A344499 [2] [1, 2, 10, 74, 730, 9002, 133210, ... A004123 %e A344499 [3] [1, 3, 21, 219, 3045, 52923, 1103781, ... A032033 %e A344499 [4] [1, 4, 36, 484, 8676, 194404, 5227236, ... A094417 %e A344499 [5] [1, 5, 55, 905, 19855, 544505, 17919055, ... A094418 %e A344499 [6] [1, 6, 78, 1518, 39390, 1277646, 49729758, ... A094419 %e A344499 [7] [1, 7, 105, 2359, 70665, 2646007, 118893705, ... A238464 %p A344499 F := proc(n) option remember; if n = 0 then return 1 fi: %p A344499 expand(add(binomial(n, k)*F(n - k)*x, k = 1..n)) end: %p A344499 seq(seq(subs(x = k, F(n - k)), k = 0..n), n = 0..10); %t A344499 F[n_] := F[n] = If[n == 0, 1, %t A344499 Expand[Sum[Binomial[n, k]*F[n - k]*x, {k, 1, n}]]]; %t A344499 Table[Table[F[n - k] /. x -> k, {k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Jun 06 2024, after _Peter Luschny_ *) %o A344499 (SageMath) # Computes the triangle. %o A344499 @cached_function %o A344499 def F(n): %o A344499 R.<x> = PolynomialRing(ZZ) %o A344499 if n == 0: return R(1) %o A344499 return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n))) %o A344499 def Fval(n): return [F(n - k).substitute(x = k) for k in (0..n)] %o A344499 for n in range(10): print(Fval(n)) %o A344499 (SageMath) # Computes the square array using the Akiyama-Tanigawa algorithm. %o A344499 def ATFubini(n, len): %o A344499 A = [0] * len %o A344499 R = [0] * len %o A344499 for k in range(len): %o A344499 R[k] = (n + 1)**k # Chancing this to R[k] = k**n generates A371761. %o A344499 for j in range(k, 0, -1): %o A344499 R[j - 1] = j * (R[j] - R[j - 1]) %o A344499 A[k] = R[0] %o A344499 return A %o A344499 for n in range(8): print([n], ATFubini(n, 7)) # _Peter Luschny_, Apr 27 2024 %Y A344499 Variant of the array is A094416 (which has column 0 and row 0 missing). %Y A344499 The coefficients of the Fubini polynomials are A131689. %Y A344499 Cf. A094420 (main diagonal of array), A372346 (row sums), A004248, A371761. %K A344499 nonn,tabl %O A344499 0,8 %A A344499 _Peter Luschny_, May 21 2021