cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344500 a(n) = Sum_{k=0..n} binomial(n, k)*CT(n, k) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*CT(n, k), where CT(n, k) is the Catalan triangle A053121.

Original entry on oeis.org

1, 1, 2, 7, 21, 66, 216, 715, 2395, 8101, 27598, 94568, 325612, 1125632, 3904512, 13583195, 47373255, 165585883, 579907758, 2034443127, 7148313381, 25151582046, 88607951512, 312518438532, 1103393962996, 3899415207676, 13792683831176, 48825746365672, 172971084083752
Offset: 0

Views

Author

Peter Luschny, May 22 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add((if n + j mod 2 = 1 then 0 else binomial(n, j)*binomial(n + 1, (n - j)/2)*(j + 1)/(n + 1) fi), j = 0..n): seq(a(n), n = 0..28);
  • Mathematica
    Table[Sum[(1 + (-1)^(n+j))/2 * Binomial[n, j] * Binomial[n+1, (n-j)/2] * (j+1)/(n+1), {j, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Apr 21 2024 *)

Formula

a(n) = Sum_{j=0..n} even(n + j)*binomial(n, j)*binomial(n + 1, (n - j)/2)*(j + 1)/(n + 1), where even(k) = 1 if k is even and otherwise 0.
From Vaclav Kotesovec, Apr 21 2024: (Start)
Recurrence: 2*(n+1)*(2*n + 1)*(13*n^3 - 17*n^2 - 12*n + 10)*a(n) = (143*n^5 - 44*n^4 - 525*n^3 + 320*n^2 + 94*n - 60)*a(n-1) + 4*(n-1)*(26*n^4 + 5*n^3 - 108*n^2 + 7*n + 22)*a(n-2) + 16*(n-2)*(n-1)*(13*n^3 + 22*n^2 - 7*n - 6)*a(n-3).
a(n) ~ sqrt((247 - 9131*13^(2/3)/(1788163 + 409728*sqrt(78))^(1/3) + (13*(1788163 + 409728*sqrt(78)))^(1/3))/13) * ((11 + (1/3)*(172017 - 16848*sqrt(78))^(1/3) + (6371 + 624*sqrt(78))^(1/3))^n / (sqrt(Pi*n) * 2^(2*n + 3) * 3^(n + 1/2))). (End)