cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344501 a(n) = Sum_{k=0..n} binomial(n, k)*HT(n, k) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*HT(n, k), where HT(n, k) is the Hermite triangle A099174.

Original entry on oeis.org

1, 1, 2, 10, 40, 176, 916, 4852, 27350, 163270, 1009396, 6504356, 43400512, 298682320, 2118282440, 15433768456, 115345136566, 882900083222, 6910879999420, 55255039432300, 450744068706896, 3747796352076736, 31734090674951512, 273414453918459800, 2395202886317347900
Offset: 0

Views

Author

Peter Luschny, May 22 2021

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) add((if n - j mod 2 = 0 then binomial(n, j)*2^((j - n)/2)*n!/(j!*((n - j)/2)!) else 0 fi), j = 0..n) end: seq(a(n), n = 0..24);
  • Mathematica
    Table[n! * Sum[Binomial[n, 2*j] / (2^j * (n - 2*j)! * j!), {j, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 21 2024 *)

Formula

a(n) = Sum_{j=0..n} even(n - j)*binomial(n, j)*2^((j - n)/2)*n!/(j!*((n - j)/2)!), where even(k) = 1 if k is even and otherwise 0.
From Vaclav Kotesovec, Apr 21 2024: (Start)
Recurrence: n*(9*n - 13)*a(n) = (3*n - 4)*(9*n - 5)*a(n-1) + (18*n^3 - 89*n^2 + 131*n - 56)*a(n-2) + (54*n^3 - 219*n^2 + 261*n - 92)*a(n-3) - (n-3)^2*(n-1)*(9*n - 4)*a(n-4).
a(n) ~ n^(n/2 - 3/8) / (2^(3/2) * sqrt(Pi) * exp(n/2 - 2*n^(3/4) + 3*sqrt(n)/4 - 5*n^(1/4)/16 + 1/8)) * (1 + 5351/(5120*n^(1/4))). (End)