A344515 Primes p such that 2^p-1 has exactly 3 distinct prime factors.
29, 43, 47, 53, 71, 73, 79, 179, 193, 211, 257, 277, 283, 311, 331, 349, 353, 389, 409, 443, 467, 499, 563, 577, 599, 613, 631, 643, 647, 683, 709, 751, 769, 829, 919, 941, 1039, 1103, 1117, 1123, 1171, 1193
Offset: 1
Examples
29 is a term since 2^29-1 = 536870911 = 233 * 1103 * 2089 has exactly 3 distinct prime factors.
Programs
-
Mathematica
Select[Range[200], PrimeQ[#] && PrimeNu[2^# - 1] == 3 &]
Formula
2^a(n) - 1 = A135977(n).
Comments