This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344535 #14 May 24 2021 10:14:00 %S A344535 1,2,3,6,4,8,12,24,5,10,15,30,20,40,60,120,9,18,27,54,36,72,108,216, %T A344535 45,90,135,270,180,360,540,1080,16,32,48,96,64,128,192,384,80,160,240, %U A344535 480,320,640,960,1920,144,288,432,864,576,1152,1728,3456,720,1440 %N A344535 For any number n with binary expansion Sum_{k = 1..m} 2^e_k (where 0 <= e_1 < ... < e_m), a(n) = Product_{k = 1..m} prime(1+A025581(e_k))^2^A002262(e_k) (where prime(k) denotes the k-th prime number). %C A344535 The ones in the binary expansion of n encode the Fermi-Dirac factors of a(n). %C A344535 The following table gives the rank of the bit corresponding to the Fermi-Dirac factor p^2^k: %C A344535 ... %C A344535 7| 6 %C A344535 5| 3 7 %C A344535 3| 1 4 8 %C A344535 2| 0 2 5 9 %C A344535 ---+-------- %C A344535 p/k| 0 1 2 3 ... %C A344535 This sequence is a bijection from the nonnegative integers to the positive integers with inverse A344537. %C A344535 This sequence establishes a bijection from A261195 to A225547. %H A344535 Rémy Sigrist, <a href="/A344535/b344535.txt">Table of n, a(n) for n = 0..8192</a> %H A344535 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A344535 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A344535 a(n) = A344534(A344531(n)). %F A344535 a(n) = A344534(n) iff n belongs to A261195. %F A344535 A064547(a(n)) = A000120(n). %F A344535 a(A006125(n)) = prime(n) for any n > 0. %F A344535 a(A036442(n+1)) = 2^2^n for any n >= 0. %F A344535 a(m + n) = a(m) * a(n) when m AND n = 0 (where AND denotes the bitwise AND operator). %e A344535 For n = 42: %e A344535 - 42 = 2^5 + 2^3 + 2^1, %e A344535 - so we have the following Fermi-Dirac factors p^2^k: %e A344535 5| X %e A344535 3| X %e A344535 2| X %e A344535 ---+------ %e A344535 p/k| 0 1 2 %e A344535 - a(42) = 3^2^0 * 5^2^0 * 2^2^2 = 240. %o A344535 (PARI) A002262(n)=n-binomial(round(sqrt(2+2*n)), 2) %o A344535 A025581(n)=binomial(1+floor(1/2+sqrt(2+2*n)), 2)-(n+1) %o A344535 a(n) = { my (v=1, e); while (n, n-=2^e=valuation(n, 2); v *= prime(1 + A025581(e))^2^A002262(e)); v } %Y A344535 Cf. A000120, A002262, A006125, A025581, A036442, A052330, A064547, A225547, A261195, A344531, A344534, A344537. %K A344535 nonn,base %O A344535 0,2 %A A344535 _Rémy Sigrist_, May 22 2021