A344559 a(n) = (1/6) * 2^(-n) * n! * [x^n] Exp(2*x, 1)*(Exp(2*x, 3) - 1), where Exp(x, m) = Sum_{k>=0} (x^k / k!)^m.
0, 0, 0, 1, 4, 10, 35, 140, 476, 1624, 6070, 22495, 81455, 301301, 1131494, 4230681, 15852396, 59881956, 226877648, 860447129, 3273728234, 12493453344, 47760610689, 182905145214, 701883651799, 2697952583635, 10385325566785, 40033903418860, 154534663044346
Offset: 0
Keywords
Crossrefs
Cf. A344854.
Programs
-
Maple
Exp := (x, m) -> sum((x^k / k!)^m, k=0..infinity): gf := Exp(2*x, 1)*(Exp(2*x, 3) - 1): ser := series(gf, x, 34): seq((1/6)*2^(-n)*n!*simplify(coeff(ser, x, n)), n = 0..28);
-
Mathematica
a[n_] := (1/6) (HypergeometricPFQ[{-n/3, (1 - n)/3, (2 - n)/3}, {1, 1}, -27] - 1); Table[a[n], {n, 0, 28}]
-
Python
from sympy import hyperexpand, Rational from sympy.functions import hyper def A344559(n): return (hyperexpand(hyper((Rational(-n,3),Rational(1-n,3),Rational(2-n,3)),(1,1),-27))-1)//6 # Chai Wah Wu, Jan 04 2024
Formula
a(n) = A344854(n) / 2^n.
a(n) = (1/6)*(hypergeom([-n/3, (1 - n)/3, (2 - n)/3], [1, 1], -27) - 1).