cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344559 a(n) = (1/6) * 2^(-n) * n! * [x^n] Exp(2*x, 1)*(Exp(2*x, 3) - 1), where Exp(x, m) = Sum_{k>=0} (x^k / k!)^m.

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 35, 140, 476, 1624, 6070, 22495, 81455, 301301, 1131494, 4230681, 15852396, 59881956, 226877648, 860447129, 3273728234, 12493453344, 47760610689, 182905145214, 701883651799, 2697952583635, 10385325566785, 40033903418860, 154534663044346
Offset: 0

Views

Author

Peter Luschny, Jun 01 2021

Keywords

Crossrefs

Cf. A344854.

Programs

  • Maple
    Exp := (x, m) -> sum((x^k / k!)^m, k=0..infinity):
    gf := Exp(2*x, 1)*(Exp(2*x, 3) - 1): ser := series(gf, x, 34):
    seq((1/6)*2^(-n)*n!*simplify(coeff(ser, x, n)), n = 0..28);
  • Mathematica
    a[n_] := (1/6) (HypergeometricPFQ[{-n/3, (1 - n)/3, (2 - n)/3}, {1, 1}, -27] - 1);
    Table[a[n], {n, 0, 28}]
  • Python
    from sympy import hyperexpand, Rational
    from sympy.functions import hyper
    def A344559(n): return (hyperexpand(hyper((Rational(-n,3),Rational(1-n,3),Rational(2-n,3)),(1,1),-27))-1)//6 # Chai Wah Wu, Jan 04 2024

Formula

a(n) = A344854(n) / 2^n.
a(n) = (1/6)*(hypergeom([-n/3, (1 - n)/3, (2 - n)/3], [1, 1], -27) - 1).