A344563 T(n, k) = binomial(n - 1, k - 1) * binomial(n, k) * 2^k, T(0, 0) = 1. Triangle read by rows, T(n, k) for 0 <= k <= n.
1, 0, 2, 0, 4, 4, 0, 6, 24, 8, 0, 8, 72, 96, 16, 0, 10, 160, 480, 320, 32, 0, 12, 300, 1600, 2400, 960, 64, 0, 14, 504, 4200, 11200, 10080, 2688, 128, 0, 16, 784, 9408, 39200, 62720, 37632, 7168, 256, 0, 18, 1152, 18816, 112896, 282240, 301056, 129024, 18432, 512
Offset: 0
Examples
[0] 1; [1] 0, 2; [2] 0, 4, 4; [3] 0, 6, 24, 8; [4] 0, 8, 72, 96, 16; [5] 0, 10, 160, 480, 320, 32; [6] 0, 12, 300, 1600, 2400, 960, 64; [7] 0, 14, 504, 4200, 11200, 10080, 2688, 128; [8] 0, 16, 784, 9408, 39200, 62720, 37632, 7168, 256; [9] 0, 18, 1152, 18816, 112896, 282240, 301056, 129024, 18432, 512.
Links
- T. Amdeberhan, Power of 2 dividing a specialized Mittag-Leffler polynomial, MathOverflow.
Crossrefs
Programs
-
Maple
aRow := n -> seq(binomial(n-1, k-1)*binomial(n,k)*2^k, k=0..n): seq(print(aRow(n)), n=0..9);
-
Mathematica
T[n_, k_] := Binomial[n-1, k-1] * Binomial[n, k] * 2^k; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
-
Python
from math import comb def T(n, k): return comb(n-1, k-1)*comb(n, k)*2**k if k > 0 else k**n print([T(n, k) for n in range(10) for k in range(n+1)]) # Michael S. Branicky, May 30 2021