A344565 Triangle read by rows, for 0 <= k <= n: T(n, k) = binomial(n, k) * binomial(binomial(n + 3, 2), 2).
3, 15, 15, 45, 90, 45, 105, 315, 315, 105, 210, 840, 1260, 840, 210, 378, 1890, 3780, 3780, 1890, 378, 630, 3780, 9450, 12600, 9450, 3780, 630, 990, 6930, 20790, 34650, 34650, 20790, 6930, 990, 1485, 11880, 41580, 83160, 103950, 83160, 41580, 11880, 1485
Offset: 0
Examples
Triangle begins: [0] 3; [1] 15, 15; [2] 45, 90, 45; [3] 105, 315, 315, 105; [4] 210, 840, 1260, 840, 210; [5] 378, 1890, 3780, 3780, 1890, 378; [6] 630, 3780, 9450, 12600, 9450, 3780, 630; [7] 990, 6930, 20790, 34650, 34650, 20790, 6930, 990; [8] 1485, 11880, 41580, 83160, 103950, 83160, 41580, 11880, 1485; [9] 2145, 19305, 77220, 180180, 270270, 270270, 180180, 77220, 19305, 2145.
Programs
-
Maple
T := (n, k) -> (n + 4)! / (8 * k! * (n - k)!): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
-
Mathematica
T[n_, k_] := (n + 4)!/(8*k!*(n - k)!); Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, May 28 2021 *)
Formula
T(n, k) = (n + 4)! / (8 * k! * (n - k)!).