cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344565 Triangle read by rows, for 0 <= k <= n: T(n, k) = binomial(n, k) * binomial(binomial(n + 3, 2), 2).

Original entry on oeis.org

3, 15, 15, 45, 90, 45, 105, 315, 315, 105, 210, 840, 1260, 840, 210, 378, 1890, 3780, 3780, 1890, 378, 630, 3780, 9450, 12600, 9450, 3780, 630, 990, 6930, 20790, 34650, 34650, 20790, 6930, 990, 1485, 11880, 41580, 83160, 103950, 83160, 41580, 11880, 1485
Offset: 0

Views

Author

Peter Luschny, May 28 2021

Keywords

Examples

			Triangle begins:
[0]   3;
[1]  15,     15;
[2]  45,     90,    45;
[3]  105,   315,   315,    105;
[4]  210,   840,  1260,    840,    210;
[5]  378,  1890,  3780,   3780,   1890,    378;
[6]  630,  3780,  9450,  12600,   9450,   3780,    630;
[7]  990,  6930, 20790,  34650,  34650,  20790,   6930,   990;
[8] 1485, 11880, 41580,  83160, 103950,  83160,  41580, 11880,  1485;
[9] 2145, 19305, 77220, 180180, 270270, 270270, 180180, 77220, 19305, 2145.
		

Crossrefs

Apparently a subtriangle of A344678. Row sums A344564.

Programs

  • Maple
    T := (n, k) -> (n + 4)! / (8 * k! * (n - k)!):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
  • Mathematica
    T[n_, k_] := (n + 4)!/(8*k!*(n - k)!); Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, May 28 2021 *)

Formula

T(n, k) = (n + 4)! / (8 * k! * (n - k)!).