This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344566 #7 May 24 2021 23:34:12 %S A344566 1,0,1,0,-1,1,0,0,-2,1,0,1,1,-3,1,0,-1,2,3,-4,1,0,0,-4,2,6,-5,1,0,1,2, %T A344566 -9,0,10,-6,1,0,-1,3,9,-15,-5,15,-7,1,0,0,-6,3,24,-20,-14,21,-8,1,0,1, %U A344566 3,-18,-6,49,-21,-28,28,-9,1 %N A344566 T(n, k) = (-1)^(n - k)*binomial(n - 1, k - 1)*hypergeom([-(n - k)/2, -(n - k - 1)/2], [1 - n], 4). Triangle read by rows, T(n, k) for 0 <= k <= n. %C A344566 The inverse of the Riordan array for directed animals A122896. Without the first column (1, 0, 0, ...) the inverse of the Motzkin triangle A064189. %F A344566 Riordan_array (1, x / (1 + x + x^2)). %e A344566 Triangle starts: %e A344566 [0] 1; %e A344566 [1] 0, 1; %e A344566 [2] 0, -1, 1; %e A344566 [3] 0, 0, -2, 1; %e A344566 [4] 0, 1, 1, -3, 1; %e A344566 [5] 0, -1, 2, 3, -4, 1; %e A344566 [6] 0, 0, -4, 2, 6, -5, 1; %e A344566 [7] 0, 1, 2, -9, 0, 10, -6, 1; %e A344566 [8] 0, -1, 3, 9, -15, -5, 15, -7, 1; %e A344566 [9] 0, 0, -6, 3, 24, -20, -14, 21, -8, 1. %p A344566 T := (n,k) -> (-1)^(n-k)*binomial(n-1,k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], 4): seq(seq(simplify(T(n, k)), k=0..n), n = 0..10); %o A344566 (SageMath) # uses[riordan_array from A256893] %o A344566 riordan_array(1, x / (1 + x + x^2), 10) %Y A344566 A117569 (row sums). %Y A344566 Cf. A122896, A064189. %K A344566 sign,tabl %O A344566 0,9 %A A344566 _Peter Luschny_, May 23 2021