This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344597 #24 May 10 2025 02:39:43 %S A344597 1,14,64,160,368,592,1104,1520,2400,3056,4640,5264,7824,8736,11776, %T A344597 13216,17984,18384,25344,26080,33312,35120,45584,44320,58480,58512, %U A344597 72000,73200,92624,86848,113520,110144,132640,132416,162816,152112,194544,185616,220416 %N A344597 a(n) = Sum_{k=1..n} mu(k) * (floor(n/k)^4 - floor((n-1)/k)^4). %F A344597 Sum_{k=1..n} a(k) * floor(n/k) = n^4. %F A344597 Sum_{k=1..n} a(k) = A082540(n). %F A344597 G.f.: Sum_{k >= 1} mu(k) * x^k * (1 + 11*x^k + 11*x^(2*k) + x^(3*k))/(1 - x^k)^4. %t A344597 a[n_] := Sum[MoebiusMu[k] * First @ Differences @ (Quotient[{n - 1, n}, k]^4), {k, 1, n}]; Array[a, 50] (* _Amiram Eldar_, May 24 2021 *) %o A344597 (PARI) a(n) = sum(k=1, n, moebius(k)*((n\k)^4-((n-1)\k)^4)); %o A344597 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k*(1+11*x^k+11*x^(2*k)+x^(3*k))/(1-x^k)^4)) %o A344597 (Python) %o A344597 from functools import lru_cache %o A344597 @lru_cache(maxsize=None) %o A344597 def A082540(n): %o A344597 if n == 0: %o A344597 return 0 %o A344597 c, j = 1, 2 %o A344597 k1 = n//j %o A344597 while k1 > 1: %o A344597 j2 = n//k1 + 1 %o A344597 c += (j2-j)*A082540(k1) %o A344597 j, k1 = j2, n//j2 %o A344597 return n*(n**3-1)-c+j %o A344597 def A344597(n): return A082540(n)-A082540(n-1) # _Chai Wah Wu_, May 09 2025 %Y A344597 Cf. A000583, A082540, A140434, A344596. %K A344597 nonn %O A344597 1,2 %A A344597 _Seiichi Manyama_, May 24 2021