cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344606 Number of alternating permutations of the prime factors of n, counting multiplicity, including twins (x,x).

This page as a plain text file.
%I A344606 #15 Dec 21 2022 20:11:22
%S A344606 1,1,1,1,1,2,1,0,1,2,1,1,1,2,2,0,1,1,1,1,2,2,1,0,1,2,0,1,1,4,1,0,2,2,
%T A344606 2,2,1,2,2,0,1,4,1,1,1,2,1,0,1,1,2,1,1,0,2,0,2,2,1,4,1,2,1,0,2,4,1,1,
%U A344606 2,4,1,1,1,2,1,1,2,4,1,0,0,2,1,4,2,2,2
%N A344606 Number of alternating permutations of the prime factors of n, counting multiplicity, including twins (x,x).
%C A344606 Differs from A335448 in having a(x^2) = 0 and a(270) = 0.
%C A344606 These are permutations of the prime factors of n, counting multiplicity, with no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z.
%C A344606 The version without twins (x,x) is A345164, which is identical to this sequence except when n is the square of a prime.
%e A344606 The permutations for n = 2, 6, 30, 180, 210, 300, 420, 720, 840:
%e A344606   2   23   253   23253   2537   25253   23275   2323252   232527
%e A344606       32   325   32325   2735   25352   25273   2325232   232725
%e A344606            352   32523   3275   32525   25372   2523232   252327
%e A344606            523   35232   3527   35252   27253             252723
%e A344606                  52323   3725   52325   27352             272325
%e A344606                          5273   52523   32527             272523
%e A344606                          5372           32725             325272
%e A344606                          5723           35272             327252
%e A344606                          7253           37252             523272
%e A344606                          7352           52327             527232
%e A344606                                         52723             723252
%e A344606                                         57232             725232
%e A344606                                         72325
%e A344606                                         72523
%e A344606 For example, there are no alternating permutations of the prime factors of 270 because the only anti-runs are {3,2,3,5,3} and {3,5,3,2,3}, neither of which is alternating, so a(270) = 0.
%t A344606 Table[Length[Select[Permutations[Flatten[ConstantArray@@@FactorInteger[n]]],!MatchQ[#,{___,x_,y_,z_,___}/;x<=y<=z||x>=y>=z]&]],{n,100}]
%Y A344606 The version for permutations is A001250.
%Y A344606 The extension to anti-run permutations is A335452.
%Y A344606 The version for compositions is A344604.
%Y A344606 The version for patterns is A344605.
%Y A344606 Positions of zeros are A344653 (counted by A344654).
%Y A344606 Not including twins (x,x) gives A345164.
%Y A344606 A008480 counts permutations of prime indices (strict: A335489, rank: A333221).
%Y A344606 A056239 adds up prime indices,  row sums of A112798.
%Y A344606 A071321 and A071322 are signed sums of prime factors.
%Y A344606 A316523 is a signed sum of prime multiplicities.
%Y A344606 A316524 and A344616 are signed sums of prime indices.
%Y A344606 A325534 counts separable partitions (ranked by A335433).
%Y A344606 A325535 counts inseparable partitions (ranked by A335448).
%Y A344606 A344740 counts partitions with an alternating permutation or twin (x,x).
%Y A344606 Cf. A000041, A000607, A000961, A001222, A003242, A026424, A028260, A049774, A103919, A181796, A343938, A344652.
%K A344606 nonn
%O A344606 1,6
%A A344606 _Gus Wiseman_, May 28 2021