This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344607 #26 Jun 09 2021 06:22:18 %S A344607 1,1,2,2,4,4,8,8,15,16,27,29,48,52,81,90,135,151,220,248,352,400,553, %T A344607 632,859,985,1313,1512,1986,2291,2969,3431,4394,5084,6439,7456,9357, %U A344607 10836,13479,15613,19273,22316,27353,31659,38558,44601,53998,62416,75168 %N A344607 Number of integer partitions of n with reverse-alternating sum >= 0. %C A344607 The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. %C A344607 Also the number of reversed integer partitions of n with alternating sum >= 0. %C A344607 A formula for the reverse-alternating sum of a partition is: (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. So a(n) is the number of integer partitions of n whose conjugate parts are all even or whose length is odd. By conjugation, this is also the number of integer partitions of n whose parts are all even or whose greatest part is odd. %C A344607 All integer partitions have alternating sum >= 0, so the non-reversed version is A000041. %C A344607 Is this sequence weakly increasing? In particular, is A344611(n) <= A160786(n)? %F A344607 a(n) + A344608(n) = A000041(n). %F A344607 a(2n+1) = A160786(n). %e A344607 The a(1) = 1 through a(8) = 15 partitions: %e A344607 (1) (2) (3) (4) (5) (6) (7) (8) %e A344607 (11) (111) (22) (221) (33) (322) (44) %e A344607 (211) (311) (222) (331) (332) %e A344607 (1111) (11111) (321) (421) (422) %e A344607 (411) (511) (431) %e A344607 (2211) (22111) (521) %e A344607 (21111) (31111) (611) %e A344607 (111111) (1111111) (2222) %e A344607 (3311) %e A344607 (22211) %e A344607 (32111) %e A344607 (41111) %e A344607 (221111) %e A344607 (2111111) %e A344607 (11111111) %t A344607 sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; %t A344607 Table[Length[Select[IntegerPartitions[n],sats[#]>=0&]],{n,0,30}] %Y A344607 The non-reversed version is A000041. %Y A344607 The opposite version (rev-alt sum <= 0) is A027187, ranked by A028260. %Y A344607 The strict case for n > 0 is A067659 (even bisection: A344650). %Y A344607 The ordered version appears to be A116406 (even bisection: A114121). %Y A344607 The odd bisection is A160786. %Y A344607 The complement is counted by A344608. %Y A344607 The Heinz numbers of these partitions are A344609 (complement: A119899). %Y A344607 The even bisection is A344611. %Y A344607 A000070 counts partitions with alternating sum 1 (reversed: A000004). %Y A344607 A000097 counts partitions with alternating sum 2 (reversed: A120452). %Y A344607 A035363 counts partitions with alternating sum 0, ranked by A000290. %Y A344607 A103919 counts partitions by sum and alternating sum. %Y A344607 A316524 is the alternating sum of prime indices of n (reversed: A344616). %Y A344607 A325534/A325535 count separable/inseparable partitions. %Y A344607 A344610 counts partitions by sum and positive reverse-alternating sum. %Y A344607 A344612 counts partitions by sum and reverse-alternating sum. %Y A344607 A344618 gives reverse-alternating sums of standard compositions. %Y A344607 Cf. A006330, A071321, A071322, A124754, A239829, A239830, A344604, A344651, A344654, A344739, A344742. %K A344607 nonn %O A344607 0,3 %A A344607 _Gus Wiseman_, May 29 2021