This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344609 #15 Jun 09 2021 06:24:06 %S A344609 1,2,3,4,5,7,8,9,11,12,13,16,17,18,19,20,23,25,27,28,29,30,31,32,36, %T A344609 37,41,42,43,44,45,47,48,49,50,52,53,59,61,63,64,66,67,68,70,71,72,73, %U A344609 75,76,78,79,80,81,83,89,92,97,98,99,100,101,102,103,105,107 %N A344609 Numbers whose alternating sum of prime indices is >= 0. %C A344609 Also Heinz numbers of partitions whose reverse-alternating sum is >= 0. These are partitions whose conjugate parts are all even or whose length is odd. %C A344609 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A344609 The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. %e A344609 The sequence of terms together with their prime indices begins: %e A344609 1: {} 20: {1,1,3} 45: {2,2,3} %e A344609 2: {1} 23: {9} 47: {15} %e A344609 3: {2} 25: {3,3} 48: {1,1,1,1,2} %e A344609 4: {1,1} 27: {2,2,2} 49: {4,4} %e A344609 5: {3} 28: {1,1,4} 50: {1,3,3} %e A344609 7: {4} 29: {10} 52: {1,1,6} %e A344609 8: {1,1,1} 30: {1,2,3} 53: {16} %e A344609 9: {2,2} 31: {11} 59: {17} %e A344609 11: {5} 32: {1,1,1,1,1} 61: {18} %e A344609 12: {1,1,2} 36: {1,1,2,2} 63: {2,2,4} %e A344609 13: {6} 37: {12} 64: {1,1,1,1,1,1} %e A344609 16: {1,1,1,1} 41: {13} 66: {1,2,5} %e A344609 17: {7} 42: {1,2,4} 67: {19} %e A344609 18: {1,2,2} 43: {14} 68: {1,1,7} %e A344609 19: {8} 44: {1,1,5} 70: {1,3,4} %e A344609 For example, the prime indices of 70 are {1,3,4} with alternating sum 1 - 3 + 4 = 2, so 70 is in the sequence. On the other hand, the prime indices of 24 are {1,1,1,2} with alternating sum 1 - 1 + 1 - 2 = -1, so 24 is not in the sequence. %t A344609 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A344609 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A344609 Select[Range[100],ats[primeMS[#]]>=0&] %Y A344609 The opposite (nonpositive) version is A028260, counted by A027187. %Y A344609 The strict case (n > 0) is counted by A067659, odd bisection A344650. %Y A344609 Permutations of prime indices of these terms are counted by A116406. %Y A344609 Complement of A119899, Heinz numbers of the partitions counted by A344608. %Y A344609 Positions of nonnegative terms in A316524 or A344617. %Y A344609 Heinz numbers of the partitions counted by A344607. %Y A344609 A000041 counts partitions of 2n with alternating sum 0, ranked by A000290. %Y A344609 A000070 counts partitions with alternating sum 1. %Y A344609 A000097 counts partitions with alternating sum 2. %Y A344609 A056239 adds up prime indices, row sums of A112798. %Y A344609 A103919 counts partitions by sum and alternating sum. %Y A344609 A120452 counts partitions with reverse-alternating sum 2. %Y A344609 A316524 is the alternating sum of the prime indices of n (reverse: A344616). %Y A344609 A335433/A335448 rank separable/inseparable partitions. %Y A344609 A344604 counts wiggly compositions with twins. %Y A344609 A344610 counts partitions by sum and positive reverse-alternating sum. %Y A344609 A344612 counts partitions by sum and reverse-alternating sum. %Y A344609 A344618 gives reverse-alternating sums of standard compositions. %Y A344609 Cf. A001222, A001250, A003242, A005649, A026424, A071321/A071322, A124754, A239829, A343938, A344611, A344651, A344653/A344742, A344739. %K A344609 nonn %O A344609 1,2 %A A344609 _Gus Wiseman_, May 30 2021