This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344610 #10 Jun 09 2021 06:22:53 %S A344610 1,1,1,2,1,1,3,3,1,1,5,5,3,1,1,7,9,6,3,1,1,11,14,12,6,3,1,1,15,23,20, %T A344610 12,6,3,1,1,22,34,35,21,12,6,3,1,1,30,52,56,38,21,12,6,3,1,1,42,75,91, %U A344610 62,38,21,12,6,3,1,1,56,109,140,103,63,38,21,12,6,3,1,1 %N A344610 Triangle read by rows where T(n,k) is the number of integer partitions of 2n with reverse-alternating sum 2k. %C A344610 The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. %C A344610 Also the number of reversed integer partitions of 2n with alternating sum 2k. %e A344610 Triangle begins: %e A344610 1 %e A344610 1 1 %e A344610 2 1 1 %e A344610 3 3 1 1 %e A344610 5 5 3 1 1 %e A344610 7 9 6 3 1 1 %e A344610 11 14 12 6 3 1 1 %e A344610 15 23 20 12 6 3 1 1 %e A344610 22 34 35 21 12 6 3 1 1 %e A344610 30 52 56 38 21 12 6 3 1 1 %e A344610 42 75 91 62 38 21 12 6 3 1 1 %e A344610 56 109 140 103 63 38 21 12 6 3 1 1 %e A344610 77 153 215 163 106 63 38 21 12 6 3 1 1 %e A344610 Row n = 5 counts the following partitions: %e A344610 (55) (442) (433) (622) (811) (10) %e A344610 (3322) (541) (532) (721) %e A344610 (4411) (22222) (631) (61111) %e A344610 (222211) (32221) (42211) %e A344610 (331111) (33211) (52111) %e A344610 (22111111) (43111) (4111111) %e A344610 (1111111111) (2221111) %e A344610 (3211111) %e A344610 (211111111) %t A344610 sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; %t A344610 Table[Length[Select[IntegerPartitions[n],k==sats[#]&]],{n,0,15,2},{k,0,n,2}] %Y A344610 The columns with initial 0's removed appear to converge to A006330. %Y A344610 The odd version is A239829. %Y A344610 The non-reversed version is A239830. %Y A344610 Row sums are A344611, odd bisection of A344607. %Y A344610 Including odd n and negative k gives A344612 (strict: A344739). %Y A344610 The strict case is A344649 (row sums: A344650). %Y A344610 A000041 counts partitions of 2n with alternating sum 0, ranked by A000290. %Y A344610 A103919 counts partitions by sum and alternating sum. %Y A344610 A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741). %Y A344610 A316524 is the alternating sum of the prime indices of n (reverse: A344616). %Y A344610 A325534/A325535 count separable/inseparable partitions. %Y A344610 A344604 counts wiggly compositions with twins. %Y A344610 A344618 gives reverse-alternating sums of standard compositions. %Y A344610 Cf. A000070, A000097, A001250, A003242, A027187, A028260, A124754, A152146, A344608, A344651, A344654. %K A344610 nonn,tabl %O A344610 0,4 %A A344610 _Gus Wiseman_, May 31 2021