cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344610 Triangle read by rows where T(n,k) is the number of integer partitions of 2n with reverse-alternating sum 2k.

This page as a plain text file.
%I A344610 #10 Jun 09 2021 06:22:53
%S A344610 1,1,1,2,1,1,3,3,1,1,5,5,3,1,1,7,9,6,3,1,1,11,14,12,6,3,1,1,15,23,20,
%T A344610 12,6,3,1,1,22,34,35,21,12,6,3,1,1,30,52,56,38,21,12,6,3,1,1,42,75,91,
%U A344610 62,38,21,12,6,3,1,1,56,109,140,103,63,38,21,12,6,3,1,1
%N A344610 Triangle read by rows where T(n,k) is the number of integer partitions of 2n with reverse-alternating sum 2k.
%C A344610 The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts.
%C A344610 Also the number of reversed integer partitions of 2n with alternating sum 2k.
%e A344610 Triangle begins:
%e A344610    1
%e A344610    1   1
%e A344610    2   1   1
%e A344610    3   3   1   1
%e A344610    5   5   3   1   1
%e A344610    7   9   6   3   1   1
%e A344610   11  14  12   6   3   1   1
%e A344610   15  23  20  12   6   3   1   1
%e A344610   22  34  35  21  12   6   3   1   1
%e A344610   30  52  56  38  21  12   6   3   1   1
%e A344610   42  75  91  62  38  21  12   6   3   1   1
%e A344610   56 109 140 103  63  38  21  12   6   3   1   1
%e A344610   77 153 215 163 106  63  38  21  12   6   3   1   1
%e A344610 Row n = 5 counts the following partitions:
%e A344610   (55)          (442)        (433)      (622)    (811)  (10)
%e A344610   (3322)        (541)        (532)      (721)
%e A344610   (4411)        (22222)      (631)      (61111)
%e A344610   (222211)      (32221)      (42211)
%e A344610   (331111)      (33211)      (52111)
%e A344610   (22111111)    (43111)      (4111111)
%e A344610   (1111111111)  (2221111)
%e A344610                 (3211111)
%e A344610                 (211111111)
%t A344610 sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
%t A344610 Table[Length[Select[IntegerPartitions[n],k==sats[#]&]],{n,0,15,2},{k,0,n,2}]
%Y A344610 The columns with initial 0's removed appear to converge to A006330.
%Y A344610 The odd version is A239829.
%Y A344610 The non-reversed version is A239830.
%Y A344610 Row sums are A344611, odd bisection of A344607.
%Y A344610 Including odd n and negative k gives A344612 (strict: A344739).
%Y A344610 The strict case is A344649 (row sums: A344650).
%Y A344610 A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
%Y A344610 A103919 counts partitions by sum and alternating sum.
%Y A344610 A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
%Y A344610 A316524 is the alternating sum of the prime indices of n (reverse: A344616).
%Y A344610 A325534/A325535 count separable/inseparable partitions.
%Y A344610 A344604 counts wiggly compositions with twins.
%Y A344610 A344618 gives reverse-alternating sums of standard compositions.
%Y A344610 Cf. A000070, A000097, A001250, A003242, A027187, A028260, A124754, A152146, A344608, A344651, A344654.
%K A344610 nonn,tabl
%O A344610 0,4
%A A344610 _Gus Wiseman_, May 31 2021