A344611 Number of integer partitions of 2n with reverse-alternating sum >= 0.
1, 2, 4, 8, 15, 27, 48, 81, 135, 220, 352, 553, 859, 1313, 1986, 2969, 4394, 6439, 9357, 13479, 19273, 27353, 38558, 53998, 75168, 104022, 143172, 196021, 267051, 362086, 488733, 656802, 879026, 1171747, 1555997, 2058663, 2714133, 3566122, 4670256, 6096924, 7935184
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 15 partitions: () (2) (4) (6) (8) (11) (22) (33) (44) (211) (222) (332) (1111) (321) (422) (411) (431) (2211) (521) (21111) (611) (111111) (2222) (3311) (22211) (32111) (41111) (221111) (2111111) (11111111)
Crossrefs
The non-reversed version is A058696 (partitions of 2n).
The ordered version appears to be A114121.
Odd bisection of A344607.
Row sums of A344610.
The strict case is A344650.
A000070 counts partitions with alternating sum 1.
A000097 counts partitions with alternating sum 2.
A103919 counts partitions by sum and alternating sum.
A120452 counts partitions of 2n with reverse-alternating sum 2.
A344618 gives reverse-alternating sums of standard compositions.
A344741 counts partitions of 2n with reverse-alternating sum -2.
Programs
-
Mathematica
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; Table[Length[Select[IntegerPartitions[n],sats[#]>=0&]],{n,0,30,2}]
Formula
Conjecture: a(n) <= A160786(n). The difference is 0, 0, 0, 0, 1, 2, 4, 9, 16, 28, 48, 79, ...
Extensions
More terms from Bert Dobbelaere, Jun 12 2021
Comments