cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344612 Triangle read by rows where T(n,k) is the number of integer partitions of n with reverse-alternating sum k ranging from -n to n in steps of 2.

This page as a plain text file.
%I A344612 #14 Jan 06 2024 14:32:07
%S A344612 1,0,1,0,1,1,0,1,1,1,0,1,2,1,1,0,1,2,2,1,1,0,1,2,3,3,1,1,0,1,2,4,3,3,
%T A344612 1,1,0,1,2,4,5,5,3,1,1,0,1,2,4,7,5,6,3,1,1,0,1,2,4,8,7,9,6,3,1,1,0,1,
%U A344612 2,4,8,12,7,11,6,3,1,1,0,1,2,4,8,14,11,14,12,6,3,1,1
%N A344612 Triangle read by rows where T(n,k) is the number of integer partitions of n with reverse-alternating sum k ranging from -n to n in steps of 2.
%C A344612 The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is also (-1)^(k-1) times the sum of the even-indexed parts minus the sum of the odd-indexed parts.
%C A344612 Also the number of reversed integer partitions of n with alternating sum k ranging from -n to n in steps of 2.
%C A344612 Also the number of integer partitions of n with (-1)^(m-1) * b = k where m is the greatest part and b is the number of odd parts, with k ranging from -n to n in steps of 2.
%H A344612 Andrew Howroyd, <a href="/A344612/b344612.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)
%e A344612 Triangle begins:
%e A344612                                 1
%e A344612                               0   1
%e A344612                             0   1   1
%e A344612                           0   1   1   1
%e A344612                         0   1   2   1   1
%e A344612                       0   1   2   2   1   1
%e A344612                     0   1   2   3   3   1   1
%e A344612                   0   1   2   4   3   3   1   1
%e A344612                 0   1   2   4   5   5   3   1   1
%e A344612               0   1   2   4   7   5   6   3   1   1
%e A344612             0   1   2   4   8   7   9   6   3   1   1
%e A344612           0   1   2   4   8  12   7  11   6   3   1   1
%e A344612         0   1   2   4   8  14  11  14  12   6   3   1   1
%e A344612       0   1   2   4   8  15  19  11  18  12   6   3   1   1
%e A344612     0   1   2   4   8  15  24  15  23  20  12   6   3   1   1
%e A344612   0   1   2   4   8  15  26  30  15  31  21  12   6   3   1   1
%e A344612 For example, row n = 7 counts the following partitions:
%e A344612   (61)  (52)    (43)      (331)      (322)    (511)  (7)
%e A344612         (4111)  (2221)    (22111)    (421)
%e A344612                 (3211)    (1111111)  (31111)
%e A344612                 (211111)
%e A344612 Row n = 9 counts the following partitions:
%e A344612   81  72    63      54        441        333      522    711  9
%e A344612       6111  4221    3222      22221      432      621
%e A344612             5211    3321      33111      531      51111
%e A344612             411111  4311      2211111    32211
%e A344612                     222111    111111111  42111
%e A344612                     321111               3111111
%e A344612                     21111111
%t A344612 sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
%t A344612 Table[Length[Select[IntegerPartitions[n],sats[#]==k&]],{n,0,15},{k,-n,n,2}]
%o A344612 (PARI) row(n)={my(v=vector(n+1)); forpart(p=n, my(s=-sum(i=1, #p, p[i]*(-1)^i)); v[(s+n)/2+1]++); v} \\ _Andrew Howroyd_, Jan 06 2024
%Y A344612 Row sums are A000041.
%Y A344612 The midline k = n/2 is also A000041.
%Y A344612 The right half (i.e., k >= 0) for even n is A344610.
%Y A344612 The rows appear to converge to A344611 (from left) and A006330 (from right).
%Y A344612 The non-reversed version is A344651 (A239830 interleaved with A239829).
%Y A344612 The strict version is A344739.
%Y A344612 A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
%Y A344612 A103919 counts partitions by sum and alternating sum (reverse: A344612).
%Y A344612 A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
%Y A344612 A316524 is the alternating sum of the prime indices of n (reverse: A344616).
%Y A344612 A325534/A325535 count separable/inseparable partitions.
%Y A344612 A344618 gives reverse-alternating sums of standard compositions.
%Y A344612 Cf. A000070, A000097, A003242, A027187, A124754, A152146, A344607, A344608, A344649, A344650, A344654.
%K A344612 nonn,tabl
%O A344612 0,13
%A A344612 _Gus Wiseman_, Jun 01 2021