cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344613 Number of rooted binary trees (in which all inner nodes have precisely two children) with n leaves and with maximal number of cherries (i.e., maximal number of pendant subtrees with two leaves).

This page as a plain text file.
%I A344613 #39 Jun 10 2021 15:03:02
%S A344613 1,1,1,1,2,1,4,2,9,3,20,6,46,11,106,23,248,46,582,98,1376,207,3264,
%T A344613 451,7777,983,18581,2179,44526,4850,106936,10905,257379,24631,620577,
%U A344613 56011,1498788,127912,3625026,293547,8779271,676157,21287278,1563372,51671864,3626149,125550018
%N A344613 Number of rooted binary trees (in which all inner nodes have precisely two children) with n leaves and with maximal number of cherries (i.e., maximal number of pendant subtrees with two leaves).
%C A344613 This sequence describes the number of rooted binary trees with n leaves with maximal cherry tree balance index or, equivalently, with minimal modified cherry tree balance index.
%H A344613 Alois P. Heinz, <a href="/A344613/b344613.txt">Table of n, a(n) for n = 1..5000</a>
%H A344613 S. J. Kersting and M. Fischer, <a href="https://arxiv.org/abs/2105.00719">Measuring tree balance using symmetry nodes - a new balance index and its extremal properties</a>, arXiv:2105.00719 [q-bio.PE], 2021.
%F A344613 a(n) = A001190(n/2) if n even, otherwise a(n) = A085748((n-1)/2).
%p A344613 b:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
%p A344613       (t-> t*(1-t)/2)(b(n/2)))+add(b(i)*b(n-i), i=1..n/2))
%p A344613     end:
%p A344613 g:= proc(n) option remember; `if`(n<1, 1,
%p A344613       add(g(n-i)*b(i), i=1..n))
%p A344613     end:
%p A344613 a:= n-> `if`(n::even, b(n/2), g((n-1)/2)):
%p A344613 seq(a(n), n=1..52);  # _Alois P. Heinz_, Jun 09 2021
%t A344613 (* WE generates the Wedderburn Etherington Numbers, OEIS sequence A001190 *)
%t A344613 WE[n_] := Module[{i},
%t A344613    If[n == 1, Return[1],
%t A344613     If[Mod[n, 2] == 0,
%t A344613      Return[
%t A344613       WE[n/2]*(WE[n/2] + 1)/2 + Sum[WE[i]*WE[n - i], {i, 1, n/2 - 1}]],
%t A344613      Return[Sum[WE[i]*WE[n - i], {i, 1, Floor[n/2]}]]
%t A344613      ]
%t A344613     ]
%t A344613    ];
%t A344613 (* b is just a support function *)
%t A344613 b[n_] := b[n] =
%t A344613    If[n < 2, n,
%t A344613     If[OddQ[n], 0, Function[t, t*(1 - t)/2][b[n/2]]] +
%t A344613      Sum[b[i]*b[n - i], {i, 1, n/2}]];
%t A344613 (* c generates the elements of OEIS sequence A085748 *)
%t A344613 c[n_] := c[n] = If[n < 1, 1, Sum[c[n - i]*b[i], {i, 1, n}]];
%t A344613 (* a generates the number of rooted binary trees with maximal number of cherries *)
%t A344613 a[n_] := Module[{},
%t A344613   If[EvenQ[n], Return[WE[n/2]], Return[c[(n - 1)/2]]]]
%Y A344613 Cf. A001190, A085748.
%K A344613 nonn
%O A344613 1,5
%A A344613 _Mareike Fischer_, Jun 09 2021