cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344616 Alternating sum of the integer partition with Heinz number n.

This page as a plain text file.
%I A344616 #12 Jun 04 2021 16:11:12
%S A344616 0,1,2,0,3,1,4,1,0,2,5,2,6,3,1,0,7,1,8,3,2,4,9,1,0,5,2,4,10,2,11,1,3,
%T A344616 6,1,0,12,7,4,2,13,3,14,5,3,8,15,2,0,1,5,6,16,1,2,3,6,9,17,1,18,10,4,
%U A344616 0,3,4,19,7,7,2,20,1,21,11,2,8,1,5,22,3,0,12
%N A344616 Alternating sum of the integer partition with Heinz number n.
%C A344616 The alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i, which is equal to the number of odd parts in the conjugate partition.
%C A344616 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
%C A344616 Also the reverse-alternating sum of the prime indices of n.
%H A344616 Alois P. Heinz, <a href="/A344616/b344616.txt">Table of n, a(n) for n = 1..20000</a>
%F A344616 a(n) = A257991(A122111(n)).
%F A344616 A057427(a(n)) = A049240(n).
%e A344616 The partition (6,4,3,2,2) has Heinz number 4095 and conjugate (5,5,3,2,1,1), so a(4095) = 5.
%p A344616 a:= n-> (l-> -add(l[i]*(-1)^i, i=1..nops(l)))(sort(map(
%p A344616     i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):
%p A344616 seq(a(n), n=1..82);  # _Alois P. Heinz_, Jun 04 2021
%t A344616 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A344616 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
%t A344616 Table[ats[Reverse[primeMS[n]]],{n,100}]
%Y A344616 Positions of nonzeros are A000037.
%Y A344616 Positions of 0's are A000290.
%Y A344616 The version for prime factors is A071321 (reverse: A071322).
%Y A344616 A version for compositions is A124754.
%Y A344616 The version for prime multiplicities is A316523.
%Y A344616 The reverse version is A316524, with sign A344617.
%Y A344616 A000041 counts partitions of 2n with alternating sum 0.
%Y A344616 A056239 adds up prime indices, row sums of A112798.
%Y A344616 A103919 counts partitions by sum and alternating sum.
%Y A344616 A335433 ranks separable partitions.
%Y A344616 A335448 ranks inseparable partitions.
%Y A344616 A344606 counts wiggly permutations of prime indices with twins.
%Y A344616 A344610 counts partitions by sum and positive reverse-alternating sum.
%Y A344616 A344612 counts partitions by sum and reverse-alternating sum.
%Y A344616 A344618 gives reverse-alternating sums of standard compositions.
%Y A344616 Cf. A000070, A001222, A026424, A028260, A116406, A119899, A343938, A344607, A344608, A344609, A344619, A344653, A344739.
%K A344616 nonn
%O A344616 1,3
%A A344616 _Gus Wiseman_, Jun 03 2021