This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344619 #7 Jun 08 2021 07:26:47 %S A344619 0,3,10,13,15,36,41,43,46,50,53,55,58,61,63,136,145,147,150,156,162, %T A344619 165,167,170,173,175,180,185,187,190,196,201,203,206,210,213,215,218, %U A344619 221,223,228,233,235,238,242,245,247,250,253,255,528,545,547,550,556,568 %N A344619 The a(n)-th composition in standard order (A066099) has alternating sum 0. %C A344619 The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. %C A344619 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %e A344619 The sequence of terms together with the corresponding compositions begins: %e A344619 0: () %e A344619 3: (1,1) %e A344619 10: (2,2) %e A344619 13: (1,2,1) %e A344619 15: (1,1,1,1) %e A344619 36: (3,3) %e A344619 41: (2,3,1) %e A344619 43: (2,2,1,1) %e A344619 46: (2,1,1,2) %e A344619 50: (1,3,2) %e A344619 53: (1,2,2,1) %e A344619 55: (1,2,1,1,1) %e A344619 58: (1,1,2,2) %e A344619 61: (1,1,1,2,1) %e A344619 63: (1,1,1,1,1,1) %e A344619 136: (4,4) %e A344619 145: (3,4,1) %e A344619 147: (3,3,1,1) %e A344619 150: (3,2,1,2) %e A344619 156: (3,1,1,3) %t A344619 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A344619 stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]] %t A344619 Select[Range[0,100],ats[stc[#]]==0&] %Y A344619 The version for Heinz numbers of partitions is A000290, counted by A000041. %Y A344619 These are the positions of zeros in A344618. %Y A344619 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A344619 A116406 counts compositions with alternating sum >= 0. %Y A344619 A124754 gives the alternating sum of standard compositions. %Y A344619 A316524 is the alternating sum of the prime indices of n. %Y A344619 A344604 counts wiggly compositions with twins. %Y A344619 A344610 counts partitions by sum and positive reverse-alternating sum. %Y A344619 A344611 counts partitions of 2n with reverse-alternating sum >= 0. %Y A344619 A344616 gives the alternating sum of reversed prime indices. %Y A344619 All of the following pertain to compositions in standard order: %Y A344619 - The length is A000120. %Y A344619 - Converting to reversed ranking gives A059893. %Y A344619 - The rows are A066099. %Y A344619 - The sum is A070939. %Y A344619 - The runs are counted by A124767. %Y A344619 - The reversed version is A228351. %Y A344619 - Strict compositions are ranked by A233564. %Y A344619 - Constant compositions are ranked by A272919. %Y A344619 - The Heinz number is A333219. %Y A344619 - Anti-run compositions are ranked by A333489. %Y A344619 Cf. A000070, A000097, A003242, A006330, A028260, A119899, A239830, A344605, A344607, A344650, A344739. %K A344619 nonn %O A344619 1,2 %A A344619 _Gus Wiseman_, Jun 03 2021