A344620 Primes p such that there is no positive integer a with 2*a, a^2-1 and a^2+1 not only smaller than p but also quadratic residues modulo p.
2, 3, 5, 7, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 79, 89, 97, 101, 113, 151, 173, 281, 283, 313, 461, 739, 827
Offset: 1
Keywords
Examples
a(5) = 13. The prime 11 is not a term since 2*2 = 4, 2^2-1 = 3 and 2^2+1 = 5 belong to the set {0 < r < 11: r is a quadratic residue modulo 11} = {1, 3, 4, 5, 9}.
Programs
-
Mathematica
tab={}; Do[p:=p=Prime[k]; Do[If[p>2&&JacobiSymbol[2a,p]==1&&JacobiSymbol[a^2-1,p]==1&&JacobiSymbol[a^2+1,p]==1,Goto[aa]],{a,1,Sqrt[p-2]}]; tab=Append[tab,p];Label[aa],{k,1,150}]; Print[tab]
Comments