A344621 Primes p such that there is no positive integer a with 2*a, a^2-1 and a^2+1 not only smaller than p but also quadratic nonresidues modulo p.
2, 3, 5, 7, 13, 17, 19, 23, 31, 41, 43, 47, 67, 71, 73, 97, 101, 127, 151, 157, 167, 191, 199, 239, 257, 311, 313, 367, 409, 439, 479, 521, 587, 599, 739, 839, 887, 1031, 1063, 1151, 1319, 2351, 2999, 3119
Offset: 1
Keywords
Examples
a(5) = 13. The prime 11 is not a term since 2*3 = 6, 3^2-1 = 8 and 3^2+1 = 10 belong to the set {0 < r < 11: r is a quadratic nonresidue modulo 11} = {2, 6, 7, 8, 10}.
Programs
-
Mathematica
tab={};Do[p:=p=Prime[k];Do[If[JacobiSymbol[2a,p]==-1&&JacobiSymbol[a^2-1,p]==-1&&JacobiSymbol[a^2+1,p]==-1,Goto[aa]],{a,1,Sqrt[p-2]}];tab=Append[tab,p];Label[aa],{k,1,450}];Print[tab]
Comments