This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344628 #13 Aug 31 2024 13:51:38 %S A344628 1193,1931,3119,3779,7793,7937,9311,9377,11393,11701,11717,11743, %T A344628 13177,13931,13997,16993,17011,17117,17431,17539,17713,19717,19997, %U A344628 21737,23339,23773,30197,31139,31699,31771,32377,33923,37217,38197,39233,39499,39799,39971 %N A344628 Primes p such that exactly four numbers among all circular permutations of the digits of p are prime. %H A344628 Felix Fröhlich, <a href="/A344628/b344628.txt">Table of n, a(n) for n = 1..10000</a> %t A344628 Select[Prime[Range[4500]],Count[FromDigits/@Table[RotateRight[IntegerDigits[#],d],{d,IntegerLength[ #]}],_?PrimeQ]==4&] (* _Harvey P. Dale_, Aug 31 2024 *) %o A344628 (PARI) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v %o A344628 eva(n) = subst(Pol(n), x, 10) %o A344628 is(n) = my(r=rot(digits(n)), i=0); while(r!=digits(n), if(ispseudoprime(eva(r)), i++); r=rot(r)); if(ispseudoprime(eva(r)), i++); if(n==1 || n==11, return(0)); if(i==4, 1, 0) %o A344628 forprime(p=1, 1e3, if(is(p), print1(p, ", "))) %Y A344628 Cf. A270083. Row 4 of A317716. %Y A344628 Cf. primes where exactly k numbers among all circular permutations of digits are prime: A068654 (k=1), A344626 (k=2), A344627 (k=3), A344629 (k=5), A344630 (k=6), A344631 (k=7), A344632 (k=8). %K A344628 nonn,base %O A344628 1,1 %A A344628 _Felix Fröhlich_, May 25 2021