This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344632 #8 May 26 2021 02:31:50 %S A344632 119139133,133119139,139133119,191391331,311913913,331191391, %T A344632 913311913,913913311,1013517313,1033939939,1039191919,1112795317, %U A344632 1113194339,1117923797,1127953171,1131943391,1139937913,1173917197,1179237971,1279531711,1310135173,1311399379 %N A344632 Primes p such that exactly eight numbers among all circular permutations of the digits of p are prime. %o A344632 (PARI) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v %o A344632 eva(n) = subst(Pol(n), x, 10) %o A344632 is(n) = my(r=rot(digits(n)), i=0); while(r!=digits(n), if(ispseudoprime(eva(r)), i++); r=rot(r)); if(ispseudoprime(eva(r)), i++); if(n==1 || n==11, return(0)); if(i==8, 1, 0) %o A344632 forprime(p=1, , if(is(p), print1(p, ", "))) %Y A344632 Cf. A270083. Row 8 of A317716. %Y A344632 Cf. primes where exactly k numbers among all circular permutations of digits are prime: A068654 (k=1), A344626 (k=2), A344627 (k=3), A344628 (k=4), A344629 (k=5), A344630 (k=6), A344631 (k=7). %K A344632 nonn,base %O A344632 1,1 %A A344632 _Felix Fröhlich_, May 25 2021