This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344633 #30 Sep 09 2024 09:34:41 %S A344633 1,2,3,5,6,9,10,12,14,15,16,18,30,90,96,110,197,210,270,330,390,410, %T A344633 630,810,930,959,990,1110,1170,1210,1230,1470,1710,1890,1956,2310, %U A344633 2430,2530,2538,2710,2730,2790,2802,2922,2970,3330,3510,3519,3630,3690,4115,4245 %N A344633 Lengths k of k-digit integers of the form 1, 12, 123, 1234, ... (A057137) which are divisible by k. %C A344633 It is easy to prove that 10*3^k, k >= 0 is always a solution. %F A344633 {n: n|A057137(n)}. - _R. J. Mathar_, Aug 16 2021 %e A344633 3 is a term since 123 is divisible by 3 (123 = 3*41). %p A344633 for n from 1 to 5000 do %p A344633 if modp(A057137(n),n) = 0 then %p A344633 printf("%d,",n) ; %p A344633 end if; %p A344633 end do: # _R. J. Mathar_, Aug 16 2021 %o A344633 (Python) %o A344633 a ="1234567890" %o A344633 for k in range(10): %o A344633 a = a + a %o A344633 sol = "" %o A344633 for n in range(1, len(a)): %o A344633 if int(a[0:n]) % n == 0: %o A344633 sol = sol + str(n) + ", " %o A344633 print(sol) %o A344633 (PARI) f(n) = 137174210*10^n\1111111111; \\ A057137 %o A344633 isok(k) = (f(k) % k) == 0; \\ _Michel Marcus_, Aug 16 2021 %Y A344633 Cf. A057137. %K A344633 nonn,base %O A344633 1,2 %A A344633 _Reiner Moewald_, May 26 2021