This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344634 #29 Jun 21 2021 03:17:24 %S A344634 1,10761677,14958585,14960717,14961735,15013205,15588833,15590573, %T A344634 15591959,15591961,15592031,15592229,15592231,15603695,15633495, %U A344634 15633503,15633517,16076087,16263743,20327615 %N A344634 Numbers k such that half the numbers from 0 to k inclusive contain the digit "0". %C A344634 Andrew Hilton (see Ref.) refers to these as "half-zero" numbers. %D A344634 Andrew Hilton, 101 Puzzles to Solve on your Microcomputer, 1984, HARRAP, page 57. %e A344634 1 is a term since among the numbers 0,1 exactly half contain a digit "0". %e A344634 10761677 is a term since among the numbers 0,1,2,...,10761677 exactly half contain a digit "0". %o A344634 (Python 3) %o A344634 z=0 %o A344634 z_s = str(z) %o A344634 counts=0 %o A344634 for x in trange (0,100000000000): %o A344634 x_s = str(x) %o A344634 if z_s in x_s: %o A344634 counts += 1 %o A344634 if counts / (x+1) == 0.5: %o A344634 print(z,x) %o A344634 (Python) %o A344634 def afind(limit): %o A344634 count0 = [0, 1] %o A344634 for k in range(1, limit+1): %o A344634 count0['0' in str(k)] += 1 %o A344634 if count0[0] == count0[1]: print(k, end=", ") %o A344634 afind(3*10**7) # _Michael S. Branicky_, May 25 2021 %Y A344634 Cf. A016189, A334474, A344636. %K A344634 nonn,base,fini,full %O A344634 1,2 %A A344634 _Glen Gilchrist_, May 25 2021