cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344642 Numbers that are the sum of four fifth powers in exactly one way.

This page as a plain text file.
%I A344642 #6 Jul 31 2021 19:38:16
%S A344642 4,35,66,97,128,246,277,308,339,488,519,550,730,761,972,1027,1058,
%T A344642 1089,1120,1269,1300,1331,1511,1542,1753,2050,2081,2112,2292,2323,
%U A344642 2534,3073,3104,3128,3159,3190,3221,3315,3370,3401,3432,3612,3643,3854,4096,4151,4182,4213,4393,4424,4635,5174,5205,5416,6197,6252
%N A344642 Numbers that are the sum of four fifth powers in exactly one way.
%C A344642 Differs from A003349 at term 270 because 51445 = 4^5 + 8^5 + 8^5 + 8^5 = 6^5 + 7^5 + 7^5 + 9^5
%H A344642 David Consiglio, Jr., <a href="/A344642/b344642.txt">Table of n, a(n) for n = 1..20000</a>
%e A344642 66 is a term because 66 = 1^5 + 1^5 + 2^5 + 2^5
%o A344642 (Python)
%o A344642 from itertools import combinations_with_replacement as cwr
%o A344642 from collections import defaultdict
%o A344642 keep = defaultdict(lambda: 0)
%o A344642 power_terms = [x**5 for x in range(1, 500)]
%o A344642 for pos in cwr(power_terms, 4):
%o A344642     tot = sum(pos)
%o A344642     keep[tot] += 1
%o A344642 rets = sorted([k for k, v in keep.items() if v == 1])
%o A344642 for x in range(len(rets)):
%o A344642     print(rets[x])
%Y A344642 Cf. A003349, A344189, A344641, A344643, A344645.
%K A344642 nonn
%O A344642 1,1
%A A344642 _David Consiglio, Jr._, May 25 2021